
Adabas

DBA Reference Manual

Manual Order Number: ADA741-030IBB

This document applies to Adabas Version 7.4 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:

Documentation@softwareag.com

� December 2002, Software AG
All rights reserved
Printed in the Federal Republic of Germany

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

I

TABLE OF CONTENTS

ABOUT THIS MANUAL 1.

1. DBA ROLES AND RESPONSIBILITIES 3.

Central Control and Coordination 3.
The DBA in the IS Organization 4.

Position of the DBA in the Organization 4.
Necessary Attributes for a DBA 5.
Management Support 5.
What Mistakes Are Possible? 6.

Establishing Database Control and Administration 7.
Establishing Database Procedures and Standards 7.
Maintaining Procedures and Standards 9.
Assisting in Database Design 9.
Educating Users 10.
Selecting Applications Suitable for the Database System 10.
DBA Function Summary 11.

Data Definition and Control 12.
Determining Responsibility for Data 12.
Selecting Applications : Advising on System Development 12.
Advising on Data Collection and Validation 13.
Defining Database Contents 13.

Database Documentation 14.
Standards 15.
Description of the Database 16.
Data Dictionary, Function and Use 17.
Predict : The Adabas Data Dictionary 18.
Applications Using the Database 19.
Description of Data Sources 20.
Data Access and Manipulation Procedures 20.
Passwords and User Identification 21.
Back-Up Procedures 22.

Adabas DBA Reference Manual

II

Restart and Recovery Procedures 22.
DBMS Performance and Measurement 23.

Education and Training 24.
Database Concepts 25.
Database Design 25.
Programming 26.
Operating Procedures and Techniques 26.
Data Entry 27.
Database Query and Report Generation 27.

The DBA and the User 28.
Liaison with the User 28.
Access Requirements 30.
Application Interface 30.
Complying with Standards and Controls 31.

The DBA and Application Selection/Development 31.
Configuration and Applications Planning 31.
Database Organization 32.
Understanding Current and Future User Requirements 32.
Coordinating Database Activities 33.
Analyzing Access Requirements 33.
Establishing Data Availability 34.
Performance Versus Flexibility 34.
Advising on Application/Program/Database Design 34.
Determining Physical Storage Requirements 35.
The Test Database and Testing Strategy 36.

The DBA and Computer Operations 37.
Influence of the Database Administrator 37.
Scheduling Computer Time 37.
Operating Procedures 38.
Restart and Recovery Procedures 38.
Database Utilities 39.
Working with Software AG 39.

2. DATABASE DESIGN 43.

Performance Control During System Design 43.
Methodology for Performance Control in System Design 44.

Table of Contents

III

File and Record Design 45.
Multiple-Value Fields and Periodic Groups 46.
Different Record Types in a Single Adabas File 48.
Linking Physical Files in a Single Logical File 49.
Data Duplication 50.
Adabas Record Design 51.

Data Access Strategies 52.
Efficient Use of Descriptors 52.
Collation Descriptor 53.
Superdescriptor 53.
Subdescriptor 53.
Phonetic Descriptor 54.
Hyperdescriptor 54.
File Coupling 54.
User-Assigned ISNs 56.
Using the ISN as a Descriptor 56.
ADAM Usage 56.

Disk Space Usage 57.
Data Compression 58.
Forward Index Compression 60.
Padding Factors 61.

Adabas Security 62.
Security Planning 62.
Password Security 63.
Security by Value 65.
Ciphering 65.
Adabas SAF Security 65.
Natural and Adabas Online System Security 65.

Recovery/Restart Design 66.
Adabas Recovery 66.
Planning and Incorporating Recoverability 67.
Matching Requirements and Facilities 67.
Transaction Recovery 68.
End Transaction (ET) Command 68.
Close (CL) Command 68.
Reading ET Data 69.

Adabas DBA Reference Manual

IV

System or Transaction Failure 69.
Limitations of Adabas Transaction Recovery 69.
Adabas Checkpoint Commands 69.
Exclusive File Control 70.
User Restart Data 70.

The Adabas Recovery Aid 72.
The Recovery Log (RLOG) 72.
Starting the Recovery Aid 73.

Multiclient Support 74.
The Owner Concept 74.
Super Users 75.
Program Compatibility 76.
Support for Soft Coupling 76.
Data and Index Structures 76.
Performance Considerations 79.
User Profile Table 79.
Possible Adabas Response Codes 79.
Utility Support for Multiclient Files 80.

Expanded Files 83.
Defining Expanded Files 84.
Inserting a Component File 86.
Removing a Component File 86.
Deleting Expanded Files 86.
Inspecting an Expanded File 86.
Expanded Files and the Adabas Nucleus 87.
Expanded Files and Adabas Utilities 88.

3. DEFINING AN ADABAS DATABASE 91.

Overview of Steps 91.
Step 1 : Estimate the Size of the Database 91.

Components Required by the Nucleus 91.
Other Components 93.
General Space Requirements 93.
General Procedure for Estimating Space 94.
Estimation Formulas 95.
Normal Index (NI) 96.

Table of Contents

V

Upper Index (UI) 100.
Address Converter (AC) 101.
Data Storage 102.
How Adabas Allocates Work Space 103.
Work Part 1: Data Protection Information 104.
Work Part 2: Intermediate Search Results 106.
Work Part 3: ISN Lists from Search Commands 107.
Work Part 4: Data Related to Distributed Transaction Processing 108.
Sort 109.

Step 2 : Allocate Space 112.
Examples 113.
Performance Note 113.

Step 3 : Format the Space 114.
Step 4 : Define Database Parameters 114.

4. DATABASE SPACE MANAGEMENT 115.

Adabas Physical Extents 115.
Relative Adabas Block Number (RABN) 116.
Adabas Logical Extents 117.
Adabas Space Allocation and Deallocation 117.

Free Space Table 117.
Space Allocation by the Adabas Nucleus 118.
Space Allocation with the ADADBS Utility 119.
Space Allocation with the ADAINV Utility 122.
Space Allocation with the ADALOD Utility 123.
Space Allocation by the ADAORD Utility 126.
Space Allocation by ADASAV (RESTORE FILES Function) 126.

Using the Database Status Report to Control Space Use 127.
Potential Space Use Problems and Recommended Actions 128.

Full Physical Extents 128.
Maximum Physical Extents Reached 129.
Maximum Logical Extents Reached 129.

Adabas DBA Reference Manual

VI

5. DATABASE MONITORING AND TUNING 131.

Monitoring Resource Use 131.
Reporting on Resource Use 131.
Monitoring Database Controls 131.
Performance Management, Statistics, and Tuning 132.
Adabas Session Statistics 133.

Input/Output Statistics 133.
Command Statistics 134.
Additional Session Statistics 136.
Buffer and Queue Statistics 138.

Command Logging 139.

6. ADABAS ONLINE SYSTEM DEMO VERSION 141.

Overview 142.
What You Can Do with the AOS Demo Version 143.

Main Menu Functions 144.
Specifying the AOS Demo Version Database 145.
Using Program Function (PF) Keys 145.
Selecting a Menu Option 146.
Getting Help 146.
AOS Demo Version Messages 146.

Session Monitoring 146.
Display ADARUN Parameters 148.
Display Hold Queue 150.
Display System Status and Thread Usage 151.
Display Maintenance Levels 154.

List Checkpoints 155.
File Maintenance 158.
Database Maintenance 161.
System Operator Command Functions 162.

Extended Error Recovery 163.
Display Locked Files 166.
Stop User(s) 168.
Terminate a Session Normally (ADAEND) 169.

Table of Contents

VII

Database Report 170.
Display Files 171.
Display General Database Layout 176.

7. ERROR HANDLING AND MESSAGE BUFFERING 179.

Range of Operations 180.
User Exit Failures 180.

Recovery or Plug-In (PIN) Routines 181.
PIN Processing 182.
Default PIN Module ADAMXY 182.
Additional PIN Modules Provided 184.

PIN Routine User Exit 193.
User Exit Inputs 193.
User Exit Outputs 194.
Condition Description Block 194.
Modifying and Reloading the Exit 194.
Using the Exit with PINAUTOR 195.
Using the Exit with PINRSP 195.

8. UNIVERSAL ENCODING SUPPORT (UES) 197.

Wide-Character Encodings 198.
Wide-Character Data Support 199.

Extended Alphanumeric Fields 199.
Wide-Character Fields 200.
Special DBCS Format Conversion Rules 201.

9. MULTIPLE PLATFORM SUPPORT 203.

Encodings 204.
Conversion of High Value in Value Buffer 205.
Data Translation Restrictions 206.
Platform Considerations 207.

Adabas DBA Reference Manual

VIII

10. USER EXITS AND HYPEREXITS 209.

User Exit 1 (General Processing) 211.
Input and Output Parameters 212.
Command Queue (CQ) Layout 213.
Command Queue Header DSECT 214.
Command Queue Element (CQE) DSECT 217.

User Exit 2 (Dual Log Processing) 221.
User Exit 2 Calling Sequence 222.
Input Parameters 223.
Output Parameter 225.
BS2000 Options for Invoking User Exit 2 225.

User Exit 3 (User-Defined Phonetization) 226.
Input Parameters 226.

User Exit 4 (User-Generated Log Data) 227.
PRILOG : Printing the Command Log 229.

User Exit 5 (Adabas Review Hub Event Handler) 234.
Input Parameters 234.
Output Parameters 235.

User Exit 6 (User Processing Before Data Compression) 236.
Input Parameters 237.
Output Parameters 238.

User Exit 8 (Operator Interface) 239.
Input Parameters 240.

User Exit 9 (ADAULD) 241.
User Exit 12 (Multiple Dataset Log Processing) 243.

User Exit 12 Calling Sequence 244.
User Exit Interface 245.
Output Parameter 247.
Activating the Sample User Exit 247.

Hyperdescriptor Exits 01 – 31 252.
Main Parameter Area 252.
INPUT Parameter Area (Pointed to by First Parameter Address) 253.
OUTPUT Parameter Area 255.
Null Value Option 256.

Table of Contents

IX

Collation Descriptor Exits 01 – 08 257.
Collation Descriptor Exit Interface 257.

APPENDIX A : COMMAND LOG FORMATS 259.

CLOGLAYOUT=4 260.
CLOGLAYOUT=5 263.

Explanation of Log Record Types 263.
Adabas Basic Log Record Type (x‘0001’) 265.
Asynchronous Request Log Record Type (x‘0002’) 269.

APPENDIX B : GLOSSARY OF ADABAS TERMS 273.

INDEX 277.

X

1

ABOUT THIS MANUAL

Note:
Dataset names starting with DD are referred to in Adabas manuals with a slash separating the
DD from the remainder of the dataset name to accommodate VSE/ESA dataset names that do
not contain the DD prefix. The slash is not part of the dataset name.

This manual describes the complete range of management and control tasks necessary for the
successful operation of the database environment.

Unit Contents

Chapter 1 reviews the role and functions of the database administrator (DBA).

Chapter 2 provides information on database design.

It includes information on Adabas file structures, multiple value fields and
periodic groups, record design, use of keys (descriptors), disk space usage
(compression, null-value suppression, padding factors), security planning,
restart and recovery planning, multiclient files, and expanded files.

Chapter 3 describes the procedures necessary to define an Adabas database: estimat-
ing database space requirements; and allocating, formatting, and defining a
database.

Chapter 4 provides information related to database space management:

� an explanation of Adabas physical and logical extents;
� an explanation of Adabas relative block number (RABN);
� an overview of space allocation by the Adabas nucleus and utilities;
� how to monitor database space usage using the database status report;
� potential space utilization problems and recommended action.

Chapter 5 provides information related to database performance monitoring and
tuning: general procedures for monitoring database activity; how to use the
statistics produced by the Adabas nucleus; and how to use the Adabas
command logging facility.

Chapter 6 describes the Adabas Online System (AOS) demo version supplied with
Adabas that provides also access to the online services of selected other
Adabas products.

Chapter 7 describes the facility for enhanced error handling and message buffering
including the associated PIN modules and routines, and user exits and
macros.

Adabas DBA Reference Manual

2

Unit Contents

Chapter 8 describes support for double- (DBCS) and multiple-byte (MBCS) character
sets and universal encoding (UES).

Chapter 9 describes support for data from/to Adabas on multiple platforms.

Chapter 10 provides an explanation of the user exits supported by Adabas.

Appendix A provides the layout of the two command log formats.

Appendix B provides a glossary of Adabas terms.

1

3

DBA ROLES AND RESPONSIBILITIES

The success of a database environment depends on central control of database design,
implementation, and use. This central control and coordination is the role of the database
administrator (DBA).

This chapter describes the roles of the DBA, the authority and responsibility the DBA might
have, the skills needed, the procedures, standards, and contacts the DBA may need to create and
maintain.

“DBA” in the context of this manual is a single person; however, large organizations may divide
DBA responsibilities among a team of personnel, each with specific skills and areas of
responsibility such as database design, tuning, or problem resolution.

Central Control and Coordination

In a database environment such as Adabas, the same data is used by many applications (“users”)
in many departments of the organization. Ownership of and responsibility for the data is shared
by departments with diverse and often conflicting needs. One task of the DBA is to resolve such
differences.

Data security and integrity are no longer bound to a single individual or department, but are
inherent in systems such as Adabas; in fact, the DBA controls and customized security profiles
offered by such systems usually improve security and integrity.

In the past, application development teams have been largely responsible for designing and
maintaining application files, usually for their own convenience. Other applications wishing to
use the data had to either accept the original file design or convert the information for their own
use. This meant inconsistent data integrity, varied recovery procedures, and questionable
privacy safeguards. In addition, little attention was given to overall system efficiency; changes
introduced in one system could adversely affect the performance of other systems.

With an integrated and shared database, such a lack of central control would soon lead to chaos.
Changes to file structure to benefit one project could adversely influence data needs of other
projects. Attempts to improve efficiency of one project could be at the expense of another. The
use of different security and recovery procedures would, at best, be difficult to manage and at
worst, result in confusion and an unstable, insecure database.

Adabas DBA Reference Manual
1

4

Clearly, proper database management means that central control is needed to ensure adherence
to common standards and an installation-wide view of hardware and software needs. This
central control is the responsibility of the DBA. For these and other reasons, it is important that
the DBA function be set up at the very beginning of the database development cycle.

The DBA in the IS Organization

The ability of the database administrator (DBA) to work effectively depends on the skill and
knowledge the DBA brings to the task, and the role the DBA has on the overall Information
Systems (IS) operation. This section describes how best to define the DBA role, discusses the
relationship of the DBA to the IS organization, and makes suggestions for taking advantage of
that relationship.

Position of the DBA in the Organization

The DBA should be placed high enough in the organization to exercise the necessary degree of
control over the use of the database and to communicate at the appropriate level within user
departments. However, the DBA should not be remote from the day-to-day processes of
monitoring database use, advising on and selecting applications, and maintaining the required
level of database integrity.

The appropriate position and reporting structure of the DBA depends solely on the nature and
size of the organization.

In most organizations, the DBA is best placed as a functional manager with an status equivalent
to the systems, programming, and operations managers. The DBA should have direct
responsibility for all aspects of the continued operation of the database. It is also useful to give
the DBA at least partial control over the programming and IS operation standards, since the
DBA must have the ability to ensure that DBMS-compatible standards are understood and
observed.

DBA Roles and Responsibilities
1

5

Necessary Attributes for a DBA

The DBA is an essential resource to the organization: a politician, technician, diplomat, and
policeman. The DBA needs to be a fair-minded person who is able to see both sides of database
problems (that is, the IS department’s side and the user’s side) without prejudice in favor of
either side. The DBA is expected to resolve problems for the benefit of the organization as a
whole.

The DBA also needs

� administrative skill to set up and enforce the standards and procedures for using the database;

� technical ability to understand the factors governing hardware performance, with considerable
knowledge both of the operating system software and the DBMS being used;

� a thorough knowledge of existing and future applications; and

� skills to produce an efficient database design that meets the application requirements.

In many medium-to-large installations, DBA functions are performed by a team rather than an
individual. In this case, different members of the team specialize in different skills and aspects
of managing database resources.

In a small installation, it may be difficult to justify a team, yet impossible to find an individual
with all the necessary attributes. In this case, a DBA must rely on assistance from other
specialists such as the systems programmer, senior operator, or senior analyst.

Management Support

To be effective, the DBA must be recognized and supported by both IS and user group
management. With an in-depth understanding of the database operation and the service it
provides to the organization, the DBA needs to be recognized as a center of competence for all
matters involving the design or use of the database.

In principle, management should include the DBA in all decisions affecting the database to
ensure that the database environment is not disrupted. Additionally, the DBA may often be able
to suggest more cost-effective solutions that were known to management.

Adabas DBA Reference Manual
1

6

What Mistakes Are Possible?

When establishing the DBA function, the following mistakes should be avoided:

� Placing the DBA too low in the organization (insufficient authority):

To function effectively, the DBA should be given enough authority to match the DBA’s
responsibilities. Far from being a threat to the established scheme of IS management, the DBA
should be seen as a necessary adjunct when working in a DBMS environment.

The DBA needs the cooperation, support, and respect of fellow managers, but will not have it
if he or she is denied sufficient authority to perform the necessary tasks.

� Placing the DBA too high in the organization (too much authority):

The position of the DBA should ensure the smooth operation of the DBMS environment, not
bring it to a standstill under mounds of paper, unnecessarily restrictive procedures, or
overbearing management.

It is accepted that the dividing line between too little and too much authority is narrow, but the
line must be recognized and drawn for each organization.

� Failing to define all DBA functions and responsibilities:

The DBA should be authorized to perform the necessary functions, as they apply to the DBMS
site. These functions need to be defined by participating managers from both the IS and user
areas after careful consideration of the organization’s requirements.

Once the functions are defined, the DBA is responsible for establishing the procedures needed
to ensure that they are performed.

� Failing to select a DBA with sufficient administrative experience:

The DBA function is not an appropriate place to teach administration to a junior manager. The
DBA function requires considerable management expertise, particularly in the area of human
relations.

DBA Roles and Responsibilities
1

7

Establishing Database Control and Administration

When establishing the system for controlling and administering the database environment, the
general responsibilities of the DBA include

� establishing database procedures and standards;

� assisting in database design;

� educating users;

� selecting applications suitable for the database system;

� maintaining database documentation; and

� administering the database.

Establishing Database Procedures and Standards

Standards and procedures are more effectively established as part of the initial planning, rather
than later after problems have arisen. This section discusses the general points to consider when
defining procedures and standards.

Database Procedures

Procedures for effective control of the database environment should be established at the very
beginning of the organization’s use of a DBMS.

These procedures are outlined elsewhere in this manual. Although many installations adopt the
use of a DBMS in a short space of time, the planning aspect of the whole process (particularly
in the design and implementation of administration and control procedures) must not be
sacrificed just to enable startup in a minimum period of time.

Obviously, the implementation of these procedures will involve much discussion, both within
IS and with the users (particularly in regard to what is acceptable, cost effective, etc.), and the
first application of DBMS technology at a particular site may see a parallel development of the
DBA procedures. However, it is essential that the organization’s IS and user management be
made aware of the need for such procedures, and (after due discussion) accept them.

Adabas DBA Reference Manual
1

8

Data Security Procedures

Who decides just how secure a data item must be? The users are too close and too personally
involved in the matter. The analysts may miss the organization-wide implications of such a
decision. The final arbitrator must be the DBA. After all, the DBA is the one who must monitor
the procedures and correct the results of violations.

Planning Recovery Procedures

The DBA must establish standard recovery procedures for use at the installation. These
procedures must be adequate for each application before it is implemented. Different
approaches (file save/restore instead of database save/restore, for example) must be chosen; the
DBA should participate in any decisions made in this area.

Setting Standards

Much of this manual attempts to define guidelines for a database environment. Not all of the
topics discussed will be relevant to a particular installation. Whether a guideline becomes a
standard or not depends mostly on the size and diversity of the user/developer organization.
Small, homogeneous user groups usually have good communication and do not require an
extensive, rigidly defined set of rules.

On the other hand, larger user groups comprising various areas or geographic locations usually
lack the contact necessary for proper controls; such groups may require “rules of the road” to
avoid incongruous data structures or program development. No one likes rules, unless they see
an obvious benefit in them. And standards are generally rules. So here are some “guidelines”
to consider when defining standards:

� Keep standards brief, clear, and to a minimum. However, if a standard could be seen as arbitrary,
give a brief justification. For example, a standard covering the use of temporary datasets in the
Adabas environment might require the following:

Using Temporary Datasets
To ensure that your job is recovery-/restart-capable, always catalog temporary datasets. The
Adabas database uses the Adabas Recovery Aid feature to automatically restore and restart
the nucleus, rebuild failed job streams, and resubmit the rebuilt job. If temporary datasets are
not cataloged, the Recovery Aid cannot include them in the rebuilt job stream.

� Review the standards at least as often as you add to them, and remove or revise outdated ones.
Provide an overview of changed/deleted/added standards to users.

If a particular control or administration procedure is deemed to be necessary at a particular site,
it should be defined as a standard.

DBA Roles and Responsibilities
1

9

Maintaining Procedures and Standards

The maintenance of database documentation should be treated as a natural part of the
application development process. For this reason, the DBA will need to become involved in the
development of each new system that uses the DBMS. The data dictionary is a major tool in
this documentation process.

With a wide knowledge of current database applications, future plans, and responsibility for the
integrity of the database, the DBA should be involved in the design of the data validation
procedures inherent in each system that inputs data to the database. In this way, the DBA can
ensure that the quality of the data in the database is maintained at an acceptable level. The Data
Dictionary may also be used to document such validation requirements.

Assisting in Database Design

The assistance that the DBA provides to the project team in this area is best illustrated by the
following questions:

� Is the logical design a true statement of the problem?

A logical database design should not embody any limitations/features of a particular DBMS;

� Does the physical design cause any processing disadvantages?

A project team will work in isolation on a specific problem unless otherwise directed;

� What about the future? Is the design flexible?

The DBA and the organization will have to live with this design for some time.

As an independent function, the DBA is the only person who can provide such an objective view
of the resulting database design. In some cases, the DBA may even become involved in the
design process itself, and at such times will ensure that the right answers can be supplied to these
questions.

Adabas DBA Reference Manual
1

10

Educating Users

Users can be oversold on the benefits which are to be derived from DBMS technology, despite
the efforts of the system analyst or DP resources manager. Such topics as “flexibility”,
“program/data independence” and “data availability” can lead to unjustified expectations and
give rise to a false sense of “creative freedom”.

It is therefore the responsibility of the DBA to ensure that the user appreciates the problems as
well as the benefits associated with working in a database environment. The DBA should devise,
select and provide introductory training for the user that meets these needs.

Selecting Applications Suitable for the Database System

When an installation acquires a DBMS, it is only natural that analysts and programmers will
be eager to use it. Every new application suddenly seems to require DBMS technology.
Someone has to take a firm grasp of this situation and control the selection of applications that
truly are suitable for DBMS technology. That person is the DBA.

The DBA should produce a list of the “pros and cons” of using the DBMS for each application.
This should be done at the feasibility study stage (that is, before too much time and money is
spent), before the system is acquired. The analysis of the proposed application should involve
such considerations as:

� Does the application need DBMS?

� Will the application disturb our existing environment?

� Will the proposed system be flexible?

� Will it be cost effective?

� Has the problem that led to proposal of the application been fully analyzed?

The DBA, as a center of competence in database matters, is thus the ideal person to oversee the
selection of new database projects.

DBA Roles and Responsibilities
1

11

DBA Function Summary

The following is a summary of the functions for which the DBA is generally responsible:

Designing Standard data definitions
Physical database
Security, privacy and recovery procedures
Support software (if not acquired with the DBMS package)

Selecting Database management system
Performance measurement tools
Tuning aids

Predicting Effect of changing volumes/new applications

Deciding Search strategies
Access methods
Database design
Record relationships
Rules of use of database

Training Analysts and programmers: in database techniques
Operators: in database operating procedures

Enforcing Standards for design, documentation, etc.
Quality control
Access rules

Organizing/
Administering

Data dictionary creation/maintenance
File conversions
Integrity, security and recovery benchmarks
Acceptance tests
Communication of changes to the users

Measuring Hardware performance
Software performance
Database usage statistics

Tuning System performance

Adabas DBA Reference Manual
1

12

Data Definition and Control

Planned Approach : Central Control of Data
Everyone involved with the database must apply a uniform methodology and standard
procedure for data definition (this overlaps with the task of establishing the data dictionary). The
DBA must formulate, establish, and maintain a consistent set of controls and standards in this
area. These standards must be planned in conjunction with all affected parties: users, IS
operations, applications designers, and the DBMS vendor.

Determining Responsibility for Data
Ultimately, one user department must be given the sole responsibility for maintaining a subset
of the data in the database, ensuring its currency and integrity relative to the remainder of the
database. The decision as to which user this will be is for the DBA to make. It is not only
necessary to decide who shall be responsible; this decision must be made known to (and agreed
by) all the other affected users. This is where the DBA’s diplomacy will be called into play.
Although it is natural that user A is responsible now, in a years time, when the use of the database
has changed, it may be that user B is now the appropriate person to accept responsibility for some
or all of the data.

Selecting Applications : Advising on System Development
The selection of applications for database implementation should be made by a committee,
chaired by the DBA. The organization should decide whether or not the users should participate
in this process. As a general rule, the user will only be interested in the cost, facilities, feasibility
and extensibility of the system, if the database design team has performed it’s data gathering
and analysis tasks adequately. The DBA must be an impartial judge with the DBA’s own
independent advisers on the various topics which are likely to be discussed.

As a center of competence, the DBA and the related staff should be in a position to advise on
systems development (but only insofar as to whether the DBMS should be used or not)—advice
that can only be given if the DBA is serving a full and useful role within the database
environment and has the wholehearted support of all interested parties.

As far as involvement in systems development is concerned, the DBA should be responsible for
the process of defining and describing new data entities and relationships, using uniform data
definition procedures. the DBA’s is the task of maintaining records of the organization’s “logical
database” and controlling what part of it is and is not implemented.

DBA Roles and Responsibilities
1

13

Advising on Data Collection and Validation

The DBA should be responsible for establishing and enforcing uniform procedures for
describing and defining the attributes of the data entities in the database. The DBA should also
introduce standards for editing and validation of the input to the database.

Besides ensuring that the minimum criteria for data quality are met, it is important that the
quality of the input be uniform so that the database remains as consistent as is practical.

The data dictionary can serve as a tool for the recording and implementation of these edit and
validation rules.

Two types of data should be considered:

Private data That is, data with a defined, single “owner”.

Here, the DBA can only insist that certain satisfactory data validation
procedures and reasonability checks are performed;

Common data That is, common-usage data.

Unless a particular user can be identified who should have control and is
prepared to accept that responsibility, the DBA should accept and exercise
the appropriate level of control over the quality of such data.

Defining Database Contents

The majority of the documentation requirements for the database environment are supportable
by the data dictionary. The data dictionary is one of the DBA’s most important tools. It must be
based upon a set of uniform data definition procedures as indicated above. The dictionary should
record logical data formats and relationships and be broken down into three main areas:

Conceptual the data and existing natural relationships

Usage how it is used now

Implementation how it is currently stored in the database

Standards are required relating to the use and/or interpretation of specific data entities.

Adabas DBA Reference Manual
1

14

The data dictionary should contain

� logical data structures;

� physical storage structures;

� data attributes;

� a description of data sources:

– Where the data comes from

– How it is obtained

– How it is edited and validated

� accuracy and security requirements:

– What are the accuracy requirements?

– What are the security requirements?

– Who may access each data item?

– Who may update each data item?

� response requirements: for each application area, what are the retrieval and response
requirements?

The next section lists these requirements in more detail. The online capability provided by
Predict, the Adabas data dictionary, significantly reduces the effort involved in satisfying
documentation requirements.

Database Documentation

Database documentation includes the recording of the procedures, standards, guidelines and
database descriptions necessary for the proper, efficient and continuing use of the database.

The documentation must be specially prepared for and selectively distributed to

� end users;

� DBA function itself;

� computer operations function;

� applications development function.

DBA Roles and Responsibilities
1

15

The DBA has the responsibility for providing and maintaining adequate documentation for
these recipients. This chapter discusses the types of documentation that are required. The list
given is not necessarily exhaustive.

Standards
Establish and maintain a consistent set of database controls, particularly in the following areas:

� Data definition: a uniform methodology should be adopted;

� Data usage;

� Ownership of, and responsibility for, identifiable portions of the database;

� Data access and manipulation: Standards for the way data is accessed and updated in the
database are crucial to ensure data integrity. Standard procedures for coding requests reduce the
possibility of errors. For example, the updating of key values should be strictly controlled;

� Data edit and validation: The DBA must establish procedures to ensure compliance with the
rules and maintain consistent levels of data quality in the database. The DBA should, therefore,
become involved in systems and acceptance testing of new applications that use the DBMS;

� Computer operations: The DBA is responsible for ensuring that standard procedures are used
by computer operations personnel when they deal with the database. This includes standard
backup procedures, restart and recovery procedures, and other operations-related activities.

Some personnel will resist the establishment of standards for the database environment. Give
careful consideration to the status of a standard and of areas where standards should be
established. In general, a new standard will require negotiation, arbitration, and compromise
before all the parties concerned will accept it even as a proposed standard. The only way to
determine whether a standard is practical is to implement it.

Standards are subject to change. The process of changing an existing standard must be as tightly
controlled as that of installing a new one. Changes should be formally proposed and
communicated to all the affected users. After a trial period, review the proposed change with
users to decide whether it should become a standard.

Periodically review the database standards to evaluate their effectiveness and to ensure that they
are being followed. Corrective action may need to follow such a review. The DBA also has the
principal responsibility for ensuring that all personnel who work in the database environment
are aware of, and adequately trained in, the use of the standards.

Because each site has its own procedures and requirements, this manual does not suggest a
specific set of standards.

Adabas DBA Reference Manual
1

16

Description of the Database

The database description should cover the following main areas:

� Conceptual database: a formal description of the data to be stored and a definition of its inherent
logical data structures. The DBA should explicitly define data structures which reflect the
DBA’s knowledge of foreseeable developments and include the needs of other known or
potential users.

� Use of the database: information should be recorded at both the application level and the
individual data item level. This documentation will be of immense value when new systems are
being developed. The information that should be recorded is discussed in the next subsection.

� Implementation: how the data is currently stored in the database. This is the documentation of
the physical storage structure of the database and it should include (among other items):

– Implemented data structures (logical data formats and relationships). These are normally
a subset of the conceptual database;

– Storage structure (physical data formats and relationships), in terms of Adabas, this means
the contents of the Field Definition Tables, coupling relationships and other inherent
relationships;

– Volume of data: number and average size of records in each file;

– Anticipated growth: by file and field size (and, therefore, record size);

– Additions and deletions of records: number in an average maintenance run. It is also useful
to keep a note of the distribution of additions and deletions (i.e., are they random across
the file or restricted to a small portion of it), as well as the manner (user program or utility)
in which these additions and deletions are performed.

In addition, the reasons why this particular implementation has been chosen should be recorded.
This information will later prove useful when maintenance or new application design is
undertaken.

The DBA is responsible for formally describing the database in the manner discussed above and
maintaining this description on a data dictionary (whether this process is automated or not). The
project team will be required to provide the DBA with all the information the DBA needs to
perform this task.

DBA Roles and Responsibilities
1

17

Data Dictionary, Function and Use

A data dictionary contains information about the definition, structure and use of data. It does
not store the actual data itself, but rather data about data. Simply stated, the data dictionary
contains the name of each data type (element), its definition (size and type), where and how it
is used and its relationship to other data elements.

A data dictionary enables the DBA to exercise better management and control over the
organization’s data resources. Advanced users of data dictionaries have also found them to be
valuable tools in project management and systems design.

The data dictionary will enable the DBA independently to manage actual data items and the
programs that manipulate and access them. This independence of control results in the
substantially enhanced usefulness of the data. The data dictionary serves to collect the
information needed in order to make the data more useful.

Containing all of the definitions of the data, the dictionary becomes the information repository
for the data’s attributes, characteristics, sources, use, and interrelationships with other data. The
data dictionary should provide the following information:

� The kind of validity tests which have been applied to this data type;

� What modules, programs, systems and reports use this data type?

� The level of security which has been applied; Who is allowed to access the data type? Who is
authorized to update this data type?

� By what other names is the data type known in various application environments?

� What is the input source for this data type?

� Textual description of the data type.

Adabas DBA Reference Manual
1

18

Predict : The Adabas Data Dictionary

Predict, the Adabas data dictionary system, is used to establish and maintain an online data
dictionary.

Database information may be entered into the dictionary in online or batch mode. The
description of the data in the Adabas dictionary includes information about files, the fields
defined for each file and the relationship between files. The description of use includes
information about the owners and users of the data in addition to the systems, programs, modules
and reports that use the data. Dictionary entries are provided for information about

� network structures

� Adabas databases

� files, fields, and relationships

� owners and users

� systems, programs, modules and reports

� field verification (processing rules)

Standard data dictionary reports may be used to

� display the entire contents of the data dictionary

� print field, file, and relationship information

� print field information by file

In addition, the dictionary data can also be accessed directly from Natural since it is stored in
a standard Adabas file.

Refer to the Predict docuomentation for more detailed information about the Adabas data
dictionary system.

DBA Roles and Responsibilities
1

19

Applications Using the Database
For each application using the database, the following information should be recorded:

� Application characteristics:
– Description of the function of the application;
– Mode of use: batch/online, single or multiuser;
– Frequency of use: standard scheduled times;
– Type and volume of transactions;
– Performance considerations: minimum acceptable response time;

� File requirements:
– Which files are accessed;
– How files are accessed (the use of descriptors);
– Specific data items (fields, subfields, superfields, and so on) used;

� Security requirements:

– Ciphering and/or password usage (that is, cipher keys and/or passwords are not to be made
generally available);

– Authorized users of this system/program/enquiry;
– Back-up requirements: frequency and content of file backups;
– Restart requirements.

Since any database is only a partial implementation of the conceptual database (see previous
section) and user’s requirements change with time, new applications of the database will be
found as time passes. Some of these applications may be developed into new systems or
additions to existing systems, but they first arise as a simple user requirement .

Establish procedures for recording unplanned applications of the database; if one becomes
relatively frequent or important, you can often gain a processing advantage by redesigning or
reorganizing the database or files within it. For example, assume that a file was initially loaded
in Customer Number order. Subsequently, applications that process the file by Salesman
Number assume greater significance. You can unload the file and reload it in Salesman Number
sequence without affecting the logical operation of most existing applications, thus achieving
an overall reduction in the processing time needed by all the applications that use the file.

Records of this unplanned use of the database or shift of emphasis in processing priorities, can
be made when a user makes an interactive request for information, whether the user does this
in his or her own department or through the DBA. These records should be regularly reviewed
by the DBA and discussed with the affected users.

Adabas DBA Reference Manual
1

20

Description of Data Sources

For any new application, the data dictionary is the first reference document for determining the
potential sources of information. The description of data sources will be derived during the
systems analysis and design phases of a new project.

Record and retain the following information about each system:

� The present form and location of data: forms, files, computer storage media;

� Access techniques to be used to acquire the data;

� The intended use of the data in relation to its present accuracy, completeness, and timeliness,
including necessary validation or editing;

� The need for modification of the data before it is stored on the database;

� The authorized agent for the use of the data;

� The cost of acquiring the data.

Data Access and Manipulation Procedures

The DBA must have administrative control over all access to and updating of the data in the
database. Unless this is so, there can be little meaningful control or protection exercised over
it. The lack of such control can result in serious security and integrity problems.

Because authority and responsibility for the database cross organizational boundaries, a
corporate policy covering database usage by and among operating units should be published.
Such policy statements can enhance the administrative control of the DBA and help to promote
clear understanding of database procedures among users and data processing personnel.

Part of this policy will include statements on

� the use of DBMS commands—who can and (more important) cannot use the various facilities
provided by the DBMS?

� database usage—is this to be achieved by user programs? Are standard interfaces such as
Natural or SQL to be used? What error handling procedures should be observed? To whom
should difficulties be reported, and how (for example, a trouble report)?

� maintenance and update procedures—who will be responsible?

This policy statement should be proposed and drafted by the DBA, and then reviewed and agreed
upon by all the affected parties.

DBA Roles and Responsibilities
1

21

Passwords and User Identification

User ID and password information needs to be stored securely by the DBA, as only the DBA
and the affected users should have access to it. This documentation will include

� assignment procedures for cipher keys, passwords and user identification;

� actual assignments: cipher keys (where it is necessary for the DBA to know this), passwords and
user identifications;

� terminal and data access procedures;

� access authorities must be established for each data entity. These should define:

– Who has the right and/or need to know the content of the data, as well as of its existence;

– Who can read the data from the database, add new occurrences of the data, update existing
values of the data, and/or delete the data from the database.

Once this authority has been established, it is important to set up proper control procedures in
order to ensure that violations of database security do not occur.

� database security procedures. The physical protection of the data in the database should be
recorded, detailing

– positive human control over the database (communications rooms, access to the computer
and terminals, storage of database backup and log tapes);

– physical separation of data entities (separate files, separate databases, use of partial mount
and file cluster facilities);

– secure areas for terminals (lockable terminals, keyholders, leased or dial-up lines, taken
offline when not in use);

– persons authorized to receive published information about the database.

The DBA uses the Adabas Security utility to implement and control password security (see the
Adabas Security Manual for more information). The DBA must be the only person at an
installation who is permitted to use this utility.

The DBA must implement procedures to physically secure the security utility itself, and all
documentation concerning security.

Adabas DBA Reference Manual
1

22

Back-Up Procedures

The content of back-up files, as either database or file copies (taken by the Adabas ADASAV
utility) should be recorded together with the following information:

� What state (or point in time) the backup data refers to;

� Identification of the data which can be backed up;

� The volume of data that is involved;

� The backup facilities that should be used in order to reestablish the database to that state;

� The frequency and schedule of database backup operations.

The DBA should help computer operations personnel to develop procedures for carrying out the
database backup task. Database backup is an essential step in ensuring that the database can be
restored to its proper state in the event of destruction or damage. The decision will have to be
taken (for every application) as to whether the entire database is to be backed up or whether
dumping and restoring of specific files is more appropriate.

Information about developing backup procedures for a particular application is included in the
Adabas Operations Manual.

Restart and Recovery Procedures

The DBA is responsible for formulating and supervising procedures for

� restarting the DBMS after failure;

� recovering the database to a recent checkpoint (if necessary), thus removing the need to repeat
database maintenance work;

� controlling the priority and sequence of database restoration.

Restart and recovery is an important database protection consideration. The DBA must develop
standards, procedures and rules to provide such a capability. The DBA must be certain that the
standards and rules are being adhered to and enforced. Restart and recovery must be planned
for and designed in conjunction with the implementation of the DBMS. It should not be added
as an afterthought.

Detailed information about Adabas restart and recovery is included in the Adabas Operations
Manual.

DBA Roles and Responsibilities
1

23

DBMS Performance and Measurement

The DBA has a continuing role in maintaining and improving the performance of the database
system.

To do this, the DBA must monitor the performance of the system and try alternative design
strategies to improve it. As work patterns change in the company, both the volume and relative
proportion of types of transactions may change. This may affect performance and design
changes may be necessary to counteract it.

In the longer term it may be possible to predict changes in workload, and plan how to meet them
by redesign or equipment enhancement.

The effect of new hardware or software should also be evaluated, and possible changes should
be cost-justified and incorporated into the long term strategy.

Keeping track of (and measuring) the performance of the DBMS is therefore an important part
of the DBA’s function. The DBA should establish and maintain records of

� the computing resources used, including frequency of use, by each application area;

� the users who are serviced by a particular application; and

� DBMS effectiveness with respect to response time and cost.

The DBA will also need to establish and document procedures for

� monitoring the frequency of DBMS usage; and

� DBMS performance management.

It is the responsibility of the DBA to monitor the database environment on a continuing basis,
in order to ensure that an efficient level of service is provided while database integrity is
maintained. This responsibility for monitoring takes the form of a variety of activities and
procedures, of which performance management is but one.

The Adabas Online System provides the DBA with a powerful tool for monitoring the database.
See the Adabas Online Systems Manual for more information.

Adabas DBA Reference Manual
1

24

Education and Training

The DBA is responsible for education and training in database concepts and the procedures and
techniques involved in operating in the database environment. The DBA develops the training
curriculum and selects the content of the training materials to be used. Information systems
personnel must be trained to implement, operate, and maintain the database environment. Users
external to the data processing area should receive training in database concepts, data
availability, data entry, report generation, and the use of query facilities.

The main features of a training program suitable for the database environment are briefly
discussed in this section.

It is wise to produce a general training program for each type of person who will come into
contact with the database environment. In this program, input (knowledge) expectations and
output (performance) expectations should be recorded together with the training that is to be
given, to ensure that the person meets the output expectations. A person requiring training can
then be readily evaluated with the input criteria and remedial training, or pre-course reading can
be prescribed before attending the appropriate training course. This approach will ensure the
effectiveness of training.

The training given should correspond with the work requirements of the individual. The DBA’s
training should be carefully planned; it should be timely (i.e., not several months before or after
the DBA is called upon to use it); and it should be immediately followed by a period of
“reinforcement” (i.e., practical use of what the DBA has been taught).

When the DBMS is initially installed, a significant number of people will require training. The
same is true when a new project starts or a new system is installed. Apart from these major
requirements, ongoing training will be needed (for example, for new employees). For this
reason, “packaged” training (for example, tape cassettes and workbooks) is recommended for
the small numbers of staff and full courses for the large numbers.

DBA Roles and Responsibilities
1

25

Database Concepts

All personnel who interact with the database environment should have an understanding of the
concepts of database management systems that includes

� why DBMSs evolved;

� similarities and differences between conventional data processing systems and DBMSs;

� advantages and disadvantages of the reduction of data duplication;

� flexibility inherent in the DBMS;

� ease of use and accessibility;

� the end user; differing “views” of the same data; the logical structuring capability of the DBMS;

� functions provided by the DBMS;

� importance of security, data integrity and recovery procedures in the database environment;

� need for database standards and controls.

Database Design

Database designers need training in the design methodology preferred at the site so that they can
quickly become productive.

A large portion of training time should be spent on practical exercises that teach and give
practice in the use of the site’s standards, particularly for documentation. In a public course
provided by Software AG, this may not be possible. In that case, the student should receive
training in site standards immediately after returning to work.

The subjects taught should include

� a high-level understanding of Adabas facilities, their control and operation;

� loading files and file definitions; Adabas direct access method (ADAM) files; estimating disk
space requirements;

� transaction processing; ET/BT logic;

� integrity; restart/recovery; autobackout; autorestart;

� security; passwords; ciphering;

� an overview of the Adabas utilities;

� program design and efficiency.

Adabas DBA Reference Manual
1

26

Programming

Training for computer programmers should be based on installation procedures and standards.
The training must be as practical as is possible with a large portion of the time spent on exercises.

During the course, students should be expected to write an application program which will
actually be run on a computer. To provide some measure of continuity and reinforcement,
provision should be made for them to complete this exercise after the course has ended.

The subjects taught in this training should include

� an overview of the Adabas facilities applicable to the applications programmer;

� Adabas direct mode commands and/or high level programming interfaces (SQL, Natural)
facilities available to the programmer;

� designing an Adabas program for efficiency and ease of maintenance.

Operating Procedures and Techniques

Training provided for computer operations personnel should be based on installation procedures
and standards. It should also be as practical as possible (for example, running application
systems, executing recovery and restart procedures).

The subjects taught should include

� operating procedures; starting an Adabas session; shutting down an Adabas session; normal
operation; exceptions; problem recovery and restart;

� running utilities: what they do and what to expect;

� scheduling computer time; communication with the DBA;

� performance management;

� controls and audit trails;

� error reporting and follow-up.

Obviously, these topics are heavily installation-dependent and as such, the training provided in
this area will need to be given by the installation’s own staff.

DBA Roles and Responsibilities
1

27

Data Entry

This form of training will be an essential part of that given to personnel in the user department
when a new application system is installed. As such, it is heavily application system-dependent.
However, it is possible to give some general guidelines.

Training should include

� input procedures, whether at a terminal or by input document; application rules;

� standards and control; auditing;

� what the system does with the input;

� input errors and their correction.

Database Query and Report Generation

The content of this type of training will depend largely upon whether it is being given to data
processing or user personnel. The former will require training in the commands and facilities
of the query facilities to be used (for example, Natural) together with details of how to construct
and run a request.

The user, on the other hand, will require much more specialized training. It will need to be
geared much more closely to the application system that the DBA is to use.

The subjects that should be covered include

� how the query facility works (an overview only); for example, Natural or SQL;

� the standard reports produced by the application system—their contents and adaptability;

� the query facility commands, functions and use with an emphasis being given to the standards
in force.

Adabas DBA Reference Manual
1

28

The DBA and the User

Before considering the normal database application development cycle and the DBA’s role
within it,

The DBA must understand what the user requires from the database. The word “user” in its
widest sense embraces user management and personnel, data processing management,
computer operations, programming, systems, software support and the DBA’s section.

The relationship between the DBA and the user community can be delicate, especially if a
particular user actually or apparently must expend more effort or accept a lower level of service
than would be the case outside the database environment.

The users should feel that the DBA is an impartial and unbiased authority whose decisions will
enhance the welfare (and support the policies) of the organization as a whole.

The DBA must be aware of both corporate long-range plans and long-range user needs. The
DBA must reconcile any conflicts that arise between users or between a particular user and any
corporate plans that are affected.

Note that during the development of a new application, the DBA should involve the project
group in any interaction with the end user.

Liaison with the User
Liaison with the user (whether programmer or end user) is the most important and sensitive part
of the DBA’s job.

In responding to an end-user request (which will normally be made in terms of retrieval
requirements), the DBA should check the documentation describing the production database,
particularly the logical data structure, to see whether the request can be readily handled.

Four basic outcomes are possible:

1. The request cannot be fulfilled at present. In this case, the DBA should note the request, and
review it at regular intervals to determine whether the situation (or need) has changed;

2. Preparing a one-time request. Using Natural, it may be possible to satisfy the request from the
existing database with minimum effort. Irrespective of whether the DBA’s section actually
writes the application to fulfill the request—indeed, the user department may have this
capability—or if the application is written by a programmer, the point is that the DBA should
define the solution to this one-time requirement for database information;

DBA Roles and Responsibilities
1

29

3. Creating a new application program. Here the application is to be run regularly. The DBA
will specify the program and negotiate with the programming manager for it to be written and
tested;

4. Changing an existing application. This may, of course, involve negotiation with the “prime
owner” of the application system, if that person is different from the requestor, because any such
change affect the performance or flexibility of the system.

Any end-user request should be fully documented, whatever the outcome. Such requests form
one of the most useful information sources of information for the DBA as to whether or not the
training supplied to the end user has been effective.

Requests from data processing personnel will normally be for

Training The DBA should decide with the requestor what training is required and
when. The DBA will need to cultivate an awareness in data processing
management, that such training cannot be provided at a moment’s notice.
Such training should be properly planned in advance.

Information The DBA will need to be satisfied that the requestor needs to know and is
authorized to have the information. If the answer to either of these ques-
tions deviates from the normal situation, some temporary or permanent
adjustment to existing standards and/or practices may need to be made.

Problems The DBA will either know the answer or may need to refer the problem to
Software AG. In the latter case, the DBA will need to assemble as much
documentation on the problem as possible.

Assistance This could take a variety of courses. The DBA should ensure that it is
indeed the DBA’s responsibility to provide the assistance that has been
requested.

Adabas DBA Reference Manual
1

30

Access Requirements

The DBA must have administrative control over any access to and updating of the database. The
DBA should establish with the users, the rights of access for each item in the database. Most
of these access and update authorities will be evident from the design of the application systems
which use the data and the data items will be secured with this in mind. When an unplanned
request arises, the user should discuss this with the DBA. The latter, by reference to the database
documentation, will be able to advise the user on the best way to satisfy the request. In addition,
the very existence of the request is in itself useful input to the DBA’s monitoring of the use of
the database.

The requirement for access to the database, whether as a part of an application system or as an
unplanned requirement, can be thought of as a “user view” or subschema of the database
implementation. Its content, security, mode of access and manipulation should all be discussed
and recorded.

Occasionally, the access requirement will cross application system boundaries. In this case, the
DBA will need to discuss the right to access the data item with the item’s “owner”.

Application Interface

The documentation standards should define the normal interface for an application program to
interact with the DBMS. One of two approaches may be used:

1. Direct calls to Adabas from a host programming language;

2. Calls for service to an access module.

Whichever of these two approaches is used, there will be cases where it is not appropriate or
even possible to adhere to the standard interface policy. Before deviating from the standard
interface technique, however, the DBA should be consulted and approval obtained.

When dealing with unplanned requirements, the DBA should advise the user on the interface
approach to be adopted. This may be an application program, with or without an SQL access
module; Natural; or something else.

DBA Roles and Responsibilities
1

31

Complying with Standards and Controls

The DBA should carefully explain to the user the benefits which are to be derived from
conforming to database standards and control and the problems that can arise if any particular
user decides to ignore them.

A feeling of mutual trust between the user and the DBA must be developed. The users should
feel that the DBA is an impartial and unbiased authority, whose decisions will enhance the
welfare and support the policies of the organization as a whole.

If the user is allowed to access the database using Natural, the DBA should be encouraged to
record any unplanned requests and inform the DBA at regular intervals of these requirements.
This is a part of the feedback and monitoring information that helps the DBA to ensure the
continued effectiveness of the database environment.

The DBA and Application Selection/Development

Configuration and Applications Planning

From the DBA’s knowledge of the use of the database and the monitoring of its performance,
the DBA can contribute valuable data-processing expertise for making management decisions
in the area of configuration and applications planning. The DBA is aware of the user’s short-
and long-term needs, as well as day-to-day problems and difficulties. The DBA’s contacts with
Software AG enable the DBA to keep abreast of the developments intended for the DBMS. The
DBA should, therefore, be brought into this type of discussion.

The DBA should be involved in any application development project from the beginning. The
DBA will be able to help in the initial survey in order to decide whether a database approach
is justified in view of the organization’s planned data processing developments.

The DBA will continue to be involved in project development after the initial implementation
of the database project(s). The addition of new projects creates special problems which the DBA
must resolve carefully.

The addition of new data and a changing use of existing data may change the performance
characteristics of an existing system. Careful redesign of the physical structure and placement
of data may be needed in order to give a reasonable service to all users.

Adabas DBA Reference Manual
1

32

Database Organization

As mentioned elsewhere, the DBA is responsible for the formulation and definition of the data
relationships for the purpose of defining logical data structures. These data structures should
reflect the DBA’s knowledge of foreseeable developments and include the needs of other related
users.

There are two major aspects:

� the definition and organizing of existing data; and

� the addition of new data.

Efficient physical structuring demands considerable expertise in translating and implementing
logical relationships. Space, performance and cost must be balanced, taking into account

� data structure (logical data formats and relationships);

� storage structure (physical data formats and relationships);

� access methods (available and to be used);

� frequency of access;

� physical storage media requirements;

� timing considerations; and

� search strategies.

The solution (and the reasoning behind it) should be fully documented.

Understanding Current and Future User Requirements

The DBA is in an ideal position to help the members of a project team to appreciate and be aware
of the user’s current and future requirements. “User” is to be interpreted in its broadest sense.
It does not only mean the section or department for which the application system is being
designed and developed. User also means other potential users, not forgetting the organization
as a whole. Known future developments must be taken into account. At times, this may mean
that the DBA will need to exercise control over the development of a new application, in order
that these developments may be readily included in the database operation when completed.

DBA Roles and Responsibilities
1

33

Coordinating Database Activities

Providing that the contents of this manual are put into practice, the DBA will be able to
coordinate all database activities. The DBA’s advice should be sought on all developments
planned for the database and the DBA should aim to ensure a steady, controlled progression to
an integrated information system, which will serve the organization as a whole.

In general, the DBA should be involved in all stages of a new project from feasibility study
onwards, both in order to advise on the practical uses of the database and also to carry out the
DBA’s quality control function.

The DBA will, therefore, provide lines of communication between different project teams, as
well as with present and future users. The aim should be to cultivate the attitude of designing
the database for the greatest benefit of all users.

Analyzing Access Requirements

This is an important part of the design of the database. When new projects reach the data analysis
and file design stage, it is important for the DBA to ensure that the project team does not take
too parochial a view of the requirements for access to the data to be used by the new application
system.

The analysis of access requirements is also an ongoing task. As the requirements of the
organization change (as they are bound to do with time), the DBA will be receiving feedback
on these changing requirements. However, the DBA should be careful not to overreact to a new
requirement; it may only be required this one time. Rather, the DBA should respond to gradual
and perceptible changes of emphasis in the access and/or processing requirements of the
organization and even then, only after full discussion with all the affected parties.

Adabas DBA Reference Manual
1

34

Establishing Data Availability
The DBA should assist the project team (possibly by using the data dictionary) to plan a suitable
data acquisition program, ensuring that the following aspects are taken into account:

� The present form and location of the data;

� How it is to be collected;

� How accurate and complete it is at present;

� What modifications are required to be made to the data before its inclusion in the database;

� At what time should the data be collected in relation to the implementation of the application
system. How is the intervening period to be handled?

This process will result in a data collection program, which will include the necessary
specifications for any special editing or validation that may be required, as well as providing
information to the DBA for recording in the data dictionary.

Performance Versus Flexibility
The design of a (part of the) database will naturally involve consideration of performance (in
the sense of disk space utilization and computer processing time), as opposed to flexibility (the
ease of adapting to future unknown needs).

The DBA should ensure that the project team does not opt for performance at the expense of
flexibility, and vice versa. The DBA is in a good position to advise the project team on which
areas of the application need to be flexible (i.e., a planned system will also use this data) and
which should be designed for good performance. The ultimate aim of such considerations of
“performance” versus “flexibility” is to avoid making decisions where only one of these aspects
is considered at the possible expense of the other.

Advising on Application/Program/Database Design
From the DBA’s contact with project teams, with other Adabas users, and with Software AG,
the DBA gradually acquires considerable knowledge about application program and data
structure design. The DBA circulates appropriate information throughout the organization. In
addition, the DBA must be available to advise on application design.

Although the DBA may not actually design the database, he/she must be able to advise team
members on file/record design, descriptor selection, and other matters. This provides the DBA
an opportunity to represent other users in the database design.

DBA Roles and Responsibilities
1

35

The DBA must ensure that the design of the physical database will efficiently support the logical
requirements of the first application without prejudicing the success of later projects. The DBA
will advise on how Adabas should be used in order to fulfill the security, integrity and recovery
needs of the application system, design rules and procedures for these. In some cases, additional
software may be needed and the DBA will help to design this. The DBA will consider whether
additional utilities are needed for saving/restoring the database, measuring performance,
analyzing the actual content of the database, and so on.

During this phase, the DBA may also be advising application project teams on the best approach
to data analysis, the use of Adabas, how to design the logical data structure and which design
options are likely to prove to be the most efficient.

Determining Physical Storage Requirements

It is the DBA’s responsibility to provide assistance to the project team in determining the
physical storage requirements for a particular application system.

The following parameters should be considered:

� The volume of data to be stored;

� The anticipated growth of data;

� The average size of records;

� The number of additions and deletions of records over a given time period;

� Data relationships (data structure);

� Data representation (internal formats);

� The effect of compression;

� The access methods which are to be used on the data.

Evaluate carefully the tradeoffs between minimizing the use of storage media and processing
costs while maximizing service (measured in terms of speed or throughput). Also consider the
need for flexibility in the implementation of the application system; requirements may be
subject to change, and other application systems may need access to this application’s data. If,
minimizing physical storage requirements means a loss of flexibility, it should not be done
without careful consideration of the problems that may arise in the future. The DBA is, of
course, ideally placed to provide the project team with this type of information.

Adabas DBA Reference Manual
1

36

The Test Database and Testing Strategy
The DBA should advise the project team on the type of test database to be used for the new
application. Assist the team by setting up the test database. During system testing, test with your
own monitoring, audit, error correction, and control procedures before the system goes “live”.
These procedures should not be designed after the system has gone into production; they should
be developed by the DBA in parallel with the development of the application system.

It is best to keep test databases separate from the production database by loading them onto
separate disk packs, or even databases. This, in itself, poses two problems:

� Tests cannot take place in parallel with production work in multiuser mode (in single-user mode,
this problem does not exist);

� Production data (or some fields in a production file) may be required to test the new system.

The first of these problems could be solved (if storage permits) by running two copies of the
Adabas nucleus in parallel—one for production work, one for test work.

The second can be solved by using the Adabas ADASAV utility to copy across the required data
from the production database to the test packs. In this case, the access authorization for the test
data will have to be agreed before testing begins.

The main advantages of having a separate test database are that files can be loaded with the file
numbers they will have when the system goes live and testing can in no way corrupt the
production database. This is a particularly important consideration when fields are to be added
to an existing file or new descriptors are to be established for the new application system.

Before systems testing starts, the DBA should decide how file conversion and database
initialization is to be accomplished and ensure the preparation of any necessary special
conversion or set-up programs. The strategy for parallel running will need careful consideration
and here, too, special programs may be needed to assist in the comparison of outputs from the
existing system and the new system or to carry out validity checks. Special inquiry facilities
(e.g., Natural) may be needed to help testing and parallel running (these have sometimes also
been found useful in subsequent live running).

Before the new database is finally implemented, acceptance tests should be run to demonstrate
that all aspects of the system, including performance and resilience, are satisfactory. These may
or may not be additional to the parallel runs.

Close control of the way in which the new project accesses data will be necessary in order to
ensure that there is not loss of data integrity for existing users of the database. For systems
testing, a special “testing mode” may be needed in order to ensure that “test changes” to the
database do not actually affect the operational database.

DBA Roles and Responsibilities
1

37

The DBA and Computer Operations

Influence of the Database Administrator

The DBA carries the responsibility for ensuring that the computer operations function performs
its duties with regard to the database environment. This responsibility is in terms of assisting
the operations function to establish database related operating procedures, restart and recovery
procedures, special database utilities and schedules for computer time for database related
work.

The DBA also has a role in actually carrying out the day-to-day administration of the procedures
and safeguards associated with the use of the database.

The DBA will ensure that the operational procedures are correctly adhered to, that dumps and
logs are correctly taken and the DBA may also carry out periodic tests of the recovery systems.

In any emergency situation, the DBA may be involved in controlling recovery, discussing
problems with users and generally working out ways of minimizing the disruption.

Scheduling Computer Time

The DBA should exercise some degree of control over the scheduling of the computer, in order
to facilitate “scheduling around a problem” and to provide for priority use of the database in
emergency situations.

While direct control over the computer schedule will reside with the computer operations
personnel, it is, nevertheless, advisable to allow the DBA some degree of discretion in
determining the schedule of events as they relate to database processing. In doing so, (for
example) problems involving currency of update can be avoided and response time
requirements during relatively infrequent peak load times can be satisfied without undue effort.

Adabas DBA Reference Manual
1

38

Operating Procedures

The DBA is responsible for working with computer operations personnel in order to develop
formal and documented procedures for operating database-related jobs on the computer.

Among the areas that should be considered are

� loading a new database;

� running database utilities;

� maintaining the data dictionary;

� maintaining the database;

� backup procedures;

� restart/recovery procedures;

� production and testing requirements.

Restart and Recovery Procedures

The DBA must ensure that the database can be restored to its proper state in the event of
destruction or damage. Restart and recovery is thus an important protection consideration and
the DBA must develop standards, procedures, and rules to provide such a capability.

Computer operations personnel must be educated in and adhere to these standards and
procedures in order to ensure that the recovery and restart of the database can be accomplished
without loss of data integrity.

Any variations to standard practice (for example, a particular sequence of programs to be run
after restart for a particular application system) should be recorded in the computer operations
run book for that application.

DBA Roles and Responsibilities
1

39

Database Utilities

The DBA is responsible for controlling the use of Adabas utilities and for developing or
acquiring specialized utilities to facilitate certain functions involving the database. These
utilities may include

� creation of test databases of suitable size which include all the features of real-life databases
(ADALOD utility);

� save/restore individual files or the entire database (ADASAV utility);

� provision of automated reports reflecting the integrity of the data in the database (ADAREP
utility);

� provision of automatic reporting of security violations (ADALOG facility).

The DBA should retain control over when the utilities are run, including who is authorized to
use them. The DBA’s permission should be sought before a utility is used (except, of course, in
the case of well-documented and tested recovery/restart procedures).

Working with Software AG

The DBA should be the primary contact between the organization and Software AG. The DBA’s
involvement with Software AG includes

� obtaining education and training for the organization’s staff;

� receiving and installing new releases and system changes to the Adabas nucleus and utilities;

� receiving and distributing manuals and other literature;

� obtaining advice;

� reporting problems;

� suggesting improvements to the system.

This chapter discusses these interfaces in detail.

Adabas DBA Reference Manual
1

40

Training and Education

Software AG supplies two types of education and training courses:

In-house Tailored to the particular requirements of an individual user site.

Open General information; any user may participate.

In-house training is normally given when the Adabas system is first installed, although the DBA
may from time to time have sufficient need for additional courses of this type. Such courses can
be tailored to meet specific customer requirements and training objectives.

An open course is more general, and although thorough, it may not meet all of the DBA-defined
specific requirements. As a result, the DBA may need to arrange supplementary training to meet
objectives.

Training is offered by Software AG in the following areas:

� Application programming with Adabas;

� Database design;

� Query facilities (for example, Natural);

� Internals of the Adabas system.

Detailed descriptions of training, including recommended sequences, prerequisites, schedules,
and enrollment information are available from your Software AG representative.

New Releases

When a new release has been thoroughly checked out, it will automatically be distributed to all
Adabas user sites together with instructions which cover the means of effecting a transfer to the
new release.

The new release should be thoroughly checked out by the DBA before production work is
transferred to it. If this is the case, the DBA may find that a standard set of test programs, in the
form of a prepared job stream, may be the best way of checking that the functions previously
available still operate correctly. Such a test job stream will grow with each new function
provided by Adabas.

DBA Roles and Responsibilities
1

41

Distribution of Manuals and Updates

As the sole recipient of new literature from Software AG, the DBA should keep a record of the
copies distributed to ensure that the literature is kept as up-to-date as possible. A register of
authorized document holders is easily maintained and is perhaps the easiest way to perform this
part of the DBA’s responsibilities.

Advice or Consultancy from Software AG

During the initial installation of the Adabas system, assistance is provided to install Adabas into
the user’s system library, generate a test database, and perform checkout tests.

Beyond this initial period, there may be occasions when the DBA feels the need for advice or
consultancy from Software AG. Such a request should always come from the DBA.

Software AG will keep the DBA informed of any planned extensions to the Adabas package.
As a general rule, such extensions will be included in the training courses as soon as they have
been firmly defined by Software AG. The DBA, however, may need to pass on such information
to existing projects in order that advantage can be taken of the new facilities as soon as they
become available, thus eliminating the need for later redesign or reprogramming.

Problem Reporting

If a problem arises in the database, the DBA will most often be able to solve them without
contacting Software AG. Nonetheless, Software AG offers comprehensive support to help
restore operations as quickly as possible. The DBA can add to the effectiveness of this support
by ensuring that the problem is defined accurately and succinctly to Software AG’s technical
support team. All available output should first be noted and/or collected for eventual reference
and, if necessary and requested, should be sent to Software AG.

DBMS Improvement

Potential areas for system improvement logically occur as a result of the monitoring, auditing
and operations activities. The DBA will have the responsibility for evaluating these potential
enhancements and initiating any improvement activities. Software AG encourages and supports
User Groups for its systems, which are an excellent forum for discussing such enhancements.
Users can start the process by submitting a change/enhancement request to the appropriate User
Group representative.

42

2

43

DATABASE DESIGN

This chapter contains information about and guidelines for database design. Topics discussed
include performance, file structure, record design, efficient use of descriptors, use of the Adabas
direct access method (ADAM), disk storage space techniques, database recovery and restart
procedures, and security.

Performance Control During System Design

The performance of a system is measured by the time and computer resources required to run
it. These may be important for the following reasons:

� Some system functions may have to be completed within a specified time frame;

� The system may compete for computer resources with other systems that have more stringent
time constraints.

Performance may not be the most important objective. Trade-offs often need to be made
between performance and

� flexibility;

� data independence;

� accessibility of information;

� audit and security considerations;

� currency of information;

� ease of scheduling and impact on concurrent users of the database; or

� disk space.

In some cases, performance may be a constraint to be met rather than an objective to be
optimized. If the system meets its time and volume requirements, attention may be turned from
performance to other areas.

Adabas DBA Reference Manual
2

44

Methodology for Performance Control in System Design

The need to achieve satisfactory performance may affect

� the design of the database;

� the options defined when first loading the database;

� the logic of application functions (for example, whether to use direct access or a combination
of sequential accesses and sorts); and/or

� operation procedures and scheduling.

Performance requirements must be considered early in the system design process. The
following procedure may be used as a basis for controlling performance:

1. Obtain from the users the time constraints for each major system function. These requirements
are likely to be absolute; that is, the system must meet them.

2. Obtain the computer resource constraints from both the users and operations personnel and use
the most stringent set.

3. Describe each function in terms of the logical design model specifying the

– manner in which each record type is processed;

– access path and the sequence in which records are required;

– frequency and volume of the run;

– time available.

4. Decide which programs are most “performance critical”. The choice may involve volumes,
frequency, deadlines, and the effect on the performance or scheduling of other systems. Other
programs may also have minimum performance requirements which may constrain the extent
to which critical functions can be optimized.

5. Optimize the performance of critical functions by shortening their access paths, improving their
logic, eliminating database features that increase overhead, and so on. On the first pass, an
attempt should be made to optimize performance without sacrificing flexibility, accessibility
of information, or other functional requirements of the system.

6. Estimate the performance of each critical function. If this does not give a satisfactory result,
either a compromise between the time constraints and the functional requirements must be
found or a hardware upgrade must be considered.

Database Design
2

45

7. Estimate the performance of other system functions. Calculate the total cost and compare the
cost and peak period resource requirements with the economic constraints. If the estimates do
not meet the constraints, then a solution must be negotiated with the user, operations, or senior
management.

8. If possible, validate the estimates by loading a test database and measuring the actual
performance of various functions. The test database should be similar to the planned one in
terms of the number of records contained in each file and the number of values for descriptors.
In the test database, the size of each record is relatively unimportant except when testing
sequential processing, and then only if records are to be processed in physical sequence.

File and Record Design

It is possible to design an Adabas database with one file for each record type as identified during
the conceptual design stage. Although such a structure would support any application functions
required of it and is the easiest to manipulate for interactive queries, it may not be the best from
the performance point of view, for the following reasons:

� As the number of Adabas files increases, the number of Adabas calls increases. Each Adabas
call requires interpretation, validation and, in multiuser mode, supervisor call (SVC) and
queueing overhead.

� In addition to the I/O operations necessary for accessing at least one index, address converter,
and Data Storage block from each file, the “one file per record type” structure requires buffer
pool space and therefore can result in the overwriting of blocks needed for a later request.

For the above reasons, it may be advisable to reduce the number of Adabas files used by critical
programs. The following techniques may be used for this procedure:

� Using multiple-value fields and periodic groups;

� Including more than one type of record in an Adabas file;

� Linking physical files into a single logical (expanded) file;

� Controlling data duplication (and the resulting high resource usage).

Each of these techniques is described in the following sections.

Adabas DBA Reference Manual
2

46

Multiple-Value Fields and Periodic Groups

The simple example below shows the practical use of a periodic group:

Order
Number

Order
Date

Date
Filled

Customer
Number

Date
Required

Item
Code Quantity

A1234E 29MAR –– UK432M 10JUN 24801K 200

–– 15APR 30419T 100

–– 01JUN 273952 300

Order_No Ord_
Date

Req_
Date

Cust_No

Order_Item

Quantity

A1234E 2903 UK432M

200

30419T 100
27395R 300

Item_Code

ORDERS File Record:

1504

24801K
0106
1006

Fill_
Date

Figure 2-1: Example of a Periodic Group

In the example shown in Figure 2-1, the order information in the table is shown converted to
a record format in an Adabas file called ORDERS. Each order record contains a periodic group
to permit a variable number of order items. In this case, the periodic group ORDER_ITEM,
comprising the ITEM_CODE field and the related fields QUANTITY, REQ_DATE, and
FILL_DATE, can specify up to 191 different items, quantity desired, and the date needed as well
as when the order is actually filled. Each item/quantity/date needed/date filled group is called
an “occurrence”; up to 191 occurrences per periodic group are possible.

The unique characteristic of the periodic group—the ability to maintain the order of
occurrences—is the reason for choosing the periodic group structure. If a periodic group
originally contained three occurrences and the first or second occurrence is later deleted, those
occurrences are set to nulls; the third occurrence remains in the third position. This contrasts
with the way leading null entries are handled in multiple-value fields, discussed below.

Database Design
2

47

Note also that the record format shown for the ORDERS file may not seem the most logical;
however, fields most likely to contain nulls should be placed together and at the end of the record
to save database space. The fields comprising periodic groups, therefore, are combined after the
other fields in the record.

On the other hand, the ORDERS file record structure, while being appropriate for managing
orders, may not as desirable when managing inventory. A stock control application for the items
in the ORDER file can require a completely different record structure. These records are kept
in a different database file called STOCK (Figure 2-2).

Req_
Date

Order_Item

STOCK File Record:

QuantityItem_Code On_Hand

3003105

1006 200

27395R 200

337015Y
80819W

Pseudocodes (multiple-value field)

Figure 2-2: Example of a Multiple-Value Field

The record format in STOCK is more suitable to the applications required for stock management
than the format in the ORDERS file. The record is designed to handle cases where an item is
designated as a replacement for another that is no longer in the inventory. By allowing multiple
values for the ITEM_CODE field, the current stock item can also be labelled with the numbers
of discontinued items that the new item replaces, allowing references to the old items to
automatically select the new replacement item. To do this, the ITEM_CODE field is defined
as a multiple-value field.

For example, the items 80819W and 337015Y are no longer in stock; their item codes have
become synonyms for the basic item 27395R. An application program that inquires about either
discontinued item can first look through all ITEM_CODE values for the old code, and then refer
to the first ITEM_CODE value in the multiple-value field to identify the replacement.

The ITEM_CODE field may contain from one to 191 values. Unlike a periodic group, however,
the individual values in a multiple-value field do not keep positional integrity if one of the values
is removed. For example, if the item 337015Y in the STOCK record shown above can no longer
be ordered and the pseudocode is set to a null, 80819W automatically becomes the second
occurrence under ITEM_CODE.

Adabas DBA Reference Manual
2

48

The following limits apply when using multiple-value fields or periodic groups:

� The maximum number of values of any multiple-value field is 191;

� The maximum number of occurrences of any one periodic group is 191;

� A periodic group cannot contain another periodic group;

� Depending on the compressed size of one occurrence, their usage can result in extremely large
record sizes which may be larger than the maximum record size supported by Adabas.

Descriptors contained within a periodic group and subdescriptors or superdescriptors derived
from fields within a periodic group cannot be used to control logical sequential reading or as
a sort key in find and sort commands. In addition, specific rules apply to the ways in which
search requests involving one or more descriptors derived from multiple-value fields and/or
contained within a periodic group may be used. These rules are described in the Adabas Utilities
Manual, Volume. 1, the ADACMP utility.

Different Record Types in a Single Adabas File

Another method of reducing the number of files is to store data belonging to two logical record
types in the same Adabas file. For example, Figure 2-3 shows how a customer file and an order
file might be combined. This technique takes advantage of Adabas null-value suppression.

Fields in the field definition table for the combined file:

Key, Record Type, Order Data, Order Item Data

Stored records:

Key Type Order Data *

Key Type * Order Item Data

* indicates suppressed null values.

Figure 2-3: Multiple Record Types

The key of an order item record could be order number plus line sequence number within this
order.

Database Design
2

49

This technique reduces I/O operations by allowing the customer and order record types to share
control blocks and higher-level (UI) index blocks. Fewer blocks have to be read before
processing of the file can start, and more space is left free in the buffer pool for other types of
blocks.

The customer and order records can be grouped together in Data Storage, reducing the number
of blocks that have to be read to retrieve all the orders for a given customer. If all the orders are
added at the same time the customer is added, the total I/O operations required will also be
reduced. If the orders are added later, they might not initially be grouped in this way but they
can be grouped later by using the ADAORD utility.

The key must be designed carefully to insure that both customer and order data can be accessed
efficiently. To distinguish different orders belonging to the same customer, the key for a
customer record will usually have the null value of the suffix appended to it, as shown in
Figure 2-4:

A00231 000 Order header for order A00231
A00231 001 Order item 1
A00231 002 Order item 2
A00231 003 Order item 3
A00232 000 Order header for order A00232
A00232 001 Order item 1

Figure 2-4: Multiple Record Types

A record type field is unnecessary if the program can tell whether it is dealing with a customer
or order record by the contents of the key suffix. It may be necessary for a program to reread
a record to read additional fields or to return all fields that are relevant to any of the record types.

Linking Physical Files in a Single Logical File
An Adabas file with 3-byte ISNs can contain a maximum of 16,777,215 records; a file with
4-byte ISNs can contain 4,294,967,294 records. If you have a large number of records of a single
type, you may need to spread the records over multiple physical files.

To reduce the number of files accessed, Adabas allows you to link multiple physical files
containing records of the same format together as a single logical file. This file structure is called
an “expanded file”, and the physical files comprising it are the “component files”. An expanded
file can comprise up to 128 component files, each with a unique range of logical ISNs. An
expanded file cannot exceed 4,294,967,294 records.

Adabas DBA Reference Manual
2

50

Note:
Since Adabas version 6 supports larger file sizes and a greater number of Adabas physical files
and databases, the need for expanded files has, in most cases, been removed.

Although an application program addresses the logical file (the address of the file is the number
of the expanded file’s base component, or “anchor” file), Adabas selects the correct component
file according to the data in a field defined as the “criterion” field. The data in this field has
characteristics unique to records in only one component file. When an application updates the
expanded file, Adabas looks at the data in the criterion field in the record to be written to
determine which component file to update. When reading expanded file data, Adabas uses the
logical ISN as the key to finding the correct component file.

Adabas utilities do not always recognize expanded files; that is, some utility operations
automatically perform their functions on all component files, and others recognize only
individual physical files. See the section Expanded Files on page 83 for more information.

Data Duplication
Physical Duplication

In some cases, a few fields from a header record are required almost every time a detail record
is accessed. For example, the production of an invoice may require both the order item data and
the product description which is part of the product record. The simplest way to make this
information quickly available to the invoicing program is to hold a copy of the product
description in the order item data. This is termed physical duplication because it involves
holding a duplicate copy of data which is already physically represented elsewhere—in this
case, in the product record. Physical duplication can also be in effect if some fields from each
detail record are stored as a periodic group in a header record.

Physical duplication seldom causes much of a problem if it is limited to fields that are updated
only infrequently. In the example above, the product description data rarely changes; the rule
is: the less activity on duplicated fields, the better.

Logical Duplication

Assume a credit control routine needs the sum of all invoices present for a customer. This
information can be derived by reading and totalling the relevant invoices, but this might involve
random access of a large number of records. It can be obtained more quickly if it is stored
permanently in a customer record that has been correctly maintained. This is termed “logical
duplication” because the duplicate information is not already stored elsewhere but is implied
by the contents of other records.

Database Design
2

51

Programs that update physically or logically duplicated information are likely to run more
slowly because they must also update the duplicate copies. Logical duplication almost always
requires duplicate updating because the change of any one record can affect data in other
records. Logical duplication can also cause severe degradation in a TP environment if many
users have to update the same record.

Adabas Record Design

Once an Adabas file structure has been determined, the next step is usually to define the fields
for the file. The field definitions are entered as input statements to the ADACMP utility’s
COMPRESS function, as described in the Adabas Utilities Manual. This section describes the
performance implications of some of the options that may be used for fields.

The fields of a file should be arranged so that those which are read or updated most often are
nearest the start of the record. This will reduce the CPU time required for data transfer by
reducing the number of fields that must be scanned. Fields that are seldom read but are mainly
used as search criteria should be placed last.

For example, if a descriptor field is not ordered first in the record and logically falls past the end
of the physical record, the inverted list entry for that record is not generated for performance
reasons. To generate the inverted list entry in this case, it is necessary to unload short,
decompress, and reload the file; or use an application program to reorder the field first for each
record of the file.

Combining Fields

If several fields are always read and updated together, CPU time can be saved by defining them
as one Adabas field. The disadvantages of combining fields in this way are:

� More disk space may be required since combining fields may reduce the possibilities for
compression;

� It may be more difficult to manipulate such fields in query language programs such as SQL.

Using Field Groups

The use of groups results in more efficient internal processing of read and update commands.
This is the result of shorter format buffers in the Adabas control block. Shorter format buffers,
in turn, take less time to process and require less space in the internal format buffer pool.

Adabas DBA Reference Manual
2

52

Numeric Fields

Numeric fields should be loaded in the format in which they will most often be used. This will
minimize the amount of format conversion required.

Fixed-Storage Option

The use of the fixed storage (FI) option normally reduces the processing time of the field but
may result in a larger disk storage requirement, particularly if the field is contained within a
periodic group. FI fields, like NU fields, should be grouped together wherever possible.

Data Access Strategies

Efficient Use of Descriptors

Descriptors are used to select records from a file based on user-specified search criteria and to
control a logical sequential read process. The use of descriptors is thus closely related to the
access strategy used for a file. Additional disk space and processing overhead are required for
each descriptor, particularly those that are updated frequently. The following guidelines may
be used in determining the number and type of descriptors to be defined for a file:

� If data in certain fields needs to be resequenced before processing on the field can continue, a
collation descriptor can be defined.

� The distribution of values in the descriptor field should be such that the descriptor can be used
to select a small percentage of records in the file;

� Additional descriptors should not be defined to further refine search criteria if a reasonably
small number of records can be selected using existing descriptors;

� If two or three descriptors are used in combination frequently (for example, area, department,
branch), a superdescriptor may be used instead of defining separate descriptors;

� If the selection criterion for a descriptor always involves a range of values, a subdescriptor may
be used;

� If the selection criterion for a descriptor never involves the selection of null value, and a large
number of null values are possible for the descriptor, the descriptor should be defined with the
null-value suppression (NU) option;

Database Design
2

53

� If a field is updated very frequently, it should normally not be defined as a descriptor;

� Files that have a high degree of volatility (large number of additions and deletions) should not
contain a large number of descriptors.

Collation Descriptor
A collation descriptor is used to sort (collate) descriptor field values in a special sequence based
on a user-supplied algorithm. An alpha or wide field can be defined as a parent field of a
“collation” descriptor.

Special collation descriptor user exits are specified using the ADARUN parameter CDXnn
(CDX01 through CDX08). The user exits are used encode the collation descriptor value or
decode it back to the original field value. Each collation descriptor must be assigned to a user
exit, and a single user exit may handle multiple collation descriptors.

Superdescriptor
A superdescriptor is a descriptor created from a combination of up to 20 fields (or portions of
fields). The fields from which a superdescriptor is derived may or may not be descriptors.
Superdescriptors are more efficient than combinations of ordinary descriptors when the search
criteria involve a combination of values. This is because Adabas accesses one inverted list
instead of several and does not have to ‘AND’ several ISN lists to produce the final list of
qualifying records. Superdescriptors can also be used in the same manner as ordinary descriptors
to control the logical sequence in which a file is read.

The values for search criteria that use superdescriptors must be provided in the format of the
superdescriptor (binary for superdescriptors derived from all numeric fields, otherwise
alphanumeric). If the superdescriptor format is binary, the input of the search value using an
interactive query or report facility such as Natural may be difficult.

Subdescriptor
A descriptor that is derived from a portion of a field is called a subdescriptor. The field used to
derive the subdescriptor may or may not be a descriptor. If a search criteria involves a range of
values that is contained in the first ‘n’ bytes of an alphanumeric field or the last ‘n’ bytes of a
numeric field, a subdescriptor may be defined from only the relevant bytes of the field. Using
a subdescriptor allows the search criterion to be represented as a single value rather than a range.
This results in more efficient searching, since Adabas does not need to merge intermediate ISN
lists; the merged list already exists.

Adabas DBA Reference Manual
2

54

For example, assume an alphanumeric field AREA of 8 bytes, the first 3 of which represent the
region and the last 5 the department. If only records for region ‘111’ are desired, a search
criterion of ‘AREA = 11100000 thru 11199999’ would be required without a subdescriptor. If
the first three bytes of AREA were defined as a subdescriptor, a search criterion equal to
‘REGION = 111’ can be specified.

Phonetic Descriptor
A phonetic descriptor may be defined to perform phonetic searches. Using a phonetic descriptor
in a Find command returns all the records that contain similar phonetic values. The phonetic
value of a descriptor is based on the first 20 bytes of the field value with only alphabetic values
being considered (numeric values, special characters and blanks are ignored).

Hyperdescriptor
The hyperdescriptor option enables descriptor values to be generated based on a user-supplied
algorithm. Up to 31 different hyperdescriptors can be defined for a single physical Adabas
database. Each hyperdescriptor must be named by an appropriate HEXnn ADARUN statement
parameter in the job where it is used.

Hyperdescriptors can be used to implement n-component superdescriptors, derived keys, or
other key constructs. For more information about hyperdescriptors, see the chapter User and
Hyperexits on page 209 in this manual, and the ADACMP utility description in the Adabas
Utilities Manual, Vol. 1.

File Coupling
Using a single Find command, file coupling allows the selection of records from one file that
are related (coupled) to records containing specified values in a second file. For example,
assume two files, CUSTOMER and ORDERS, that contain customer and order information,
respectively. Each file contains the descriptor CUSTOMER_NUMBER, which is used as the
basis for relating (coupling) the files.

Physical Coupling
The files are physically coupled using the ADAINV utility, which creates a pair of additional
indices in the inverted list indicating which records in the CUSTOMER file are related (coupled)
to records in the ORDERS file (that is, have the same customer number) and vice versa. Once
the files have been coupled, a single Find command containing descriptors from either file may
be constructed, for example:

Database Design
2

55

FIND CUSTOMER WITH NAME = JOHNSON
 AND COUPLED TO ORDERS
 WITH ORDER-MONTH = JANUARY

Physical coupling may be useful for information retrieval systems in which file volatility is very
low, or the additional overhead of the coupling lists is deemed insignificant compared with the
ease with which queries may be formulated. It may also be useful for small files which are
primarily query-oriented.

Physical coupling may involve a considerable amount of additional overhead if the files
involved are frequently updated. The coupling lists must be updated if a record in either of the
files is added or deleted, or if the descriptor used as the basis for the coupling is updated in either
file.

Physical coupling requires additional disk space for the storage of the coupling indices. The
space required depends on the number of records that are related (coupled). The best case is
where the coupling descriptor is a unique key for one of the files. This means that only a few
records in one file will be coupled to a given record in the other file. The worst case is when a
many-to-many relationship exists between the files. This will result in a large number of records
being coupled to other records in both files.

A descriptor used as the basis for coupling should normally be defined with the null suppression
option so that records containing a null value are not included in the coupling indices.

See the Adabas Utilities Manual, the ADAINV utility, for additional information on the use of
coupling.

Logical Coupling

A multifile query may also be performed by specifying the field to be used for interfile linkage
in the search criteria. This feature is called logical coupling and does not require the files to be
physically coupled.

Although this technique requires read commands, it is normally more efficient if the coupling
descriptor is volatile because it does not require any physical coupling lists. It should also be
noted that the user program need only specify the search criteria and the field to be used for the
soft-coupling link. Adabas performs all necessary search, read and internal list matching
operations.

Adabas DBA Reference Manual
2

56

User-Assigned ISNs

The user has the option of assigning the ISN of each record in a file rather than having this done
by Adabas. This technique permits later data retrieval using the ISN directly rather than using
the inverted list technique. This requires that the user develop his own method for the assigning
a unique ISN to each record. The resulting ISNs must be within the range of the MINISN and
MAXISN parameter values specified by the ADALOD utility when the file is loaded.

Using the ISN as a Descriptor

The user may store the ISN of related records in another record in order to be able to read the
related records directly without using the Inverted Lists.

For example, assume an application which needs to read an order record and then find and read
all customer records for the order. If the ISN of each customer record (for more than one
customer per order, a multiple-value field could be used) were stored in the order record, the
customer records could be read directly since the ISN is available in the order record.

Storing the customer record ISNs avoids having to issue a FIND command to the customer file
to determine the customer records for the order. This technique requires that the field containing
the ISNs of the customer records be established and maintained in the order record, and assumes
that the ISN assignment in the customer file will not be changed by a file unload and reload
operation.

ADAM Usage

The Adabas direct access method (ADAM) facility permits the retrieval of records directly from
Data Storage without access to the inverted lists. The Data Storage block number in which a
record is located is calculated using a randomizing algorithm based on the ADAM key of the
record. The use of ADAM is completely transparent to application programs and query and
report writer facilities.

The ADAM key of each record must be a unique value. The ISN of a record may also be used
as the ADAM key.

While accessing ADAM files is significantly faster, adding new records to and loading of
ADAM files is slower than for standard files because successive new records will not generally
be stored in the same block.

Database Design
2

57

If an ADAM file is to be processed both randomly and in a given logical sequence, the logical
sequential processing may be optimized by using the bit truncation feature of the ADALOD
utility. This feature permits the truncation of a user-specified number of bits from the rightmost
portion of each ADAM key value prior to its usage as input to the randomizing algorithm. This
will cause records of keys with similar leftmost values to be stored in the same Data Storage
block.

It is important not to truncate too many bits, however, as this may increase the number of
overflow records and degrade random access performance. The reason is, overflow records
which cannot be stored in the blocks located using the ADAM key are stored elsewhere using
the standard inverted list process; overflow records must also be located using the inverted list.
The only other way to minimize overflow is to specify a relatively large file and padding factor
size.

ADAM will generally use an average of 1.2 to 1.5 I/O operations (including an average of
overflow records stored under Associator control in other blocks of the file), rather than the three
to four I/O operations required to retrieve a record using the inverted lists. Overflow records are
also retrieved using normal Associator inverted list references.

The variable factors of an ADAM file that affect performance are, therefore, the amount of disk
space available (the more space available, the fewer the overflow records which need to be
located with an inverted list), the number of bits truncated from the ADAM key, and the amount
of record adding and update activity. The ADAMER utility may be used to determine the
average number of I/O operations for various combinations of disk space and bit truncation. See
the Adabas Utilities Manual for additional information.

Disk Space Usage

The efficient use of disk space is especially important in a database environment since

� sharing data between several users, possibly concurrently and in different combinations,
normally requires that a large proportion of an organization’s data be stored online; and

� some applications require extremely large amounts of data.

Decisions concerning the efficient usage of disk space must be made while considering other
objectives of the system (performance, flexibility, ease of use). This section discusses the
techniques and considerations involved in performing trade-offs between these objectives and
the efficient usage of disk space.

Adabas DBA Reference Manual
2

58

Data Compression

Each field may be defined to Adabas with one of three compression options:

� Fixed storage (FI), in which the field is not compressed at all. One-byte fields that are always
filled (for example, “gender” in a personnel record) and alphanumeric or numeric fields with
full values (“personnel number”) should always be specified as fixed (FI) fields.

� Ordinary compression (the default) which causes Adabas to remove trailing blanks from
alphanumeric fields and leading zeros from numeric fields;

� Null-value suppression, which includes ordinary compression and in addition suppresses the
null value for a field. Adjacent null value fields are combined into a single value.

Figure 2-5 illustrates how various values of a five-byte alphanumeric field are stored using each
compression option.

Field Value Fixed Storage
Ordinary

Compression
Null-Value

Suppression

ABCbb ABCbb (5 bytes) 4ABC (4 bytes) 4ABC (4 bytes)

ABCDb ABCDb (5 bytes) 5ABCD (5 bytes) 5ABCD (5 bytes)

ABCDE ABCDE (5 bytes) 6ABCDE (6 bytes) 6ABCDE (6 bytes)

bbbbb bbbbb (5 bytes) 2b (2 bytes) * (1 byte)

X X (1 byte) 2X (2 bytes) 2X (2 bytes)

Figure 2-5: Adabas Compression

The number preceding each stored value is an inclusive length byte (not used for FI fields). The
asterisk shown under null-value suppression indicates a suppressed field count. This is a
one-byte field which indicates the number of consecutive empty (suppressed) fields present at
this point in the record. This field can represent up to 63 suppressed fields.

The compression options chosen also affect the creation of the inverted list for the field (if it
is a descriptor) and the processing time needed for compression and decompression of the field.

Database Design
2

59

Fixed Storage

Fixed storage indicates that no compression is to be performed on the field. The field is stored
according to its standard length with no length byte. Fixed storage should be specified for small
one- or two-byte fields that are rarely null, and for fields for which little or no compression is
possible. Refer to the Adabas Utilities Manual, the ADACMP utility, for restrictions related to
the use of FI fields.

Ordinary Compression

Ordinary compression results in the removal of trailing blanks from alphanumeric fields and
leading zeros from numeric fields. As can be seen in Figure 2-5, ordinary compression will
result in a saving in disk space if at least two bytes of trailing blanks or leading zeros are
removed. For two-byte fields, however, there is no savings, and for one-byte fields, adding the
length byte actually doubles the needed space. Such fields, and fields that rarely have leading
or trailing zeros or blanks, should be defined with the fixed storage (FI) option to prevent
compression.

Null-Value Suppression

If null-value suppression (NU) is specified for a field, and the field value is null, a one-byte
empty field indicator is stored instead of the length byte and the compressed null value (see
Figure 2-5). This empty field indicator specifies the number of consecutive suppressed fields
that contain null values at this point in the record. It is, therefore, advantageous to physically
position fields which are frequently empty next to one another in the record, and to define each
with the null-value suppression option.

An NU field that is also defined as a descriptor is not included in the inverted lists if it contains
a null value. This means that a find command referring to that descriptor will not recognize
qualifying descriptor records that contain a null value.

This applies also to subdescriptors and superdescriptors derived from a field that is defined with
null-value suppression. No entry will be made for a subdescriptor if the bytes of the field from
which it is derived contain a null value and the field is defined with the null-value suppression
(NU) option. No entry will be made for a superdescriptor if any of the fields from which it is
derived is an NU field containing a null value.

Therefore, if there is a need to search on a descriptor for null values, or to read records containing
a null value in descriptor sequence—for example, to control logical sequential reading or
sorting—then the descriptor field should not be defined with the NU option.

Adabas DBA Reference Manual
2

60

Null-value suppression is normally recommended for multiple-value fields and fields within
periodic groups in order to reduce the amount of disk space required and the internal processing
requirements of these types of fields. The updating of such fields varies according to the
compression option used.

If a multiple-value field value defined with the NU option is updated with a null value, all values
to the right are shifted left and the value count is reduced accordingly. If all the fields of a
periodic group are defined with the NU option, and the entire group is updated to a null value,
the occurrence count will be reduced only if the occurrence updated is the highest (last)
occurrence. For detailed information on the updating of multiple-value fields and periodic
groups, see the Adabas Utilities Manual, ADACMP utility, and the Adabas Command Reference
Manual, A1/A4 and N1/N2 commands.

Forward Index Compression
The forward (or ‘front’ or ‘prefix’) index compression feature saves index space by removing
redundant prefix information from index values. The benefits are less disk space used, possibly
fewer index levels used, fewer index I/O operations, and therefore greater overall throughput.
The buffer pool becomes more effective because the same amount of index information
occupies less space. Commands such as L3, L9, or S2, which sequentially traverse the index,
become faster and the smaller index size reduces the elapsed time for Adabas utilities that read
or modify the index.

Within one index block, the first value is stored in full length. For all subsequent values, the
prefix that is common with the predecessor is compressed. An index value is represented by

<l,p,value>

—where

p is the number of bytes that are identical to the prefix of the preceding value; and

l is the exclusive length of the remaining value including the p-byte.

For example:

Decompressed Compressed

ABCDE 6 0 ABCDE

ABCDEF 2 5 F

ABCGGG 4 3 GGG

ABCGGH 2 5 H

Database Design
2

61

Index compression is not affected by the format of a descriptor. It functions as well for PE-option
and multiclient descriptors.

The maximum possible length of a compressed index value occurs for an alphanumeric value
in a periodic group:

253 bytes for the proper value if no bytes are compressed
1 byte for the PE index
1 byte for the p-byte.

The total exclusive length can thus be stored in a single byte.

Adabas implements forward index compression at the file level. When loading a file
(ADALOD), an option is provided to compress index values for that file or not. The option can
be changed by reordering the file (ADAORD).

Adabas also provides the option of compressing all index values for a database as a whole. In
this case, specific files can be set differently; the file-level setting overrides the database setting.

The decision to compress index values or not is based on the similarity of index values and the
size of the file:

� the more similar the index values, the better the compression results.

� small files are not good candidates because the absolute amount of space saved would be small
whereas large files are good candidates for index compression.

Even in a worst case scenario where the index values for a file do not compress well, a
compressed index will not require more index blocks than an uncompressed index.

Padding Factors
A large amount of record update activity may result in a considerable amount of record
migration, i.e., removal of the record from its current block to another block in which sufficient
space for the expanded record is available. Record migration may be considerably reduced by
defining a larger padding factor for Data Storage for the file when it is loaded. The padding
factor represents the percentage of each physical block which is to be reserved for record
expansion.

The padding area is not used during file loading or when adding new records to a file (this is
not applicable for an ADAM file, since the padding factor is used if necessary to store records
into their calculated Data Storage block). A large padding factor should not be used if only a
small percentage of the records is likely to expand, since the padding area of all the blocks in
which nonexpanding records are located would be wasted.

Adabas DBA Reference Manual
2

62

If a large amount of record update/addition is to be performed in which a large number of new
values must be inserted within the current value range of one or more descriptors, a considerable
amount of migration may also occur within the Associator. This may be reduced by assigning
a larger padding factor for the Associator.

The disadvantages of a large padding factor are a larger disk space requirement (fewer records
or entries per block) and possible degradation of sequential processing since more physical
blocks will have to be read.

Padding factors are specified when a file is loaded, but can be changed when executing the
ADADBS MODFCB function or the ADAORD utility for the file or database.

Adabas Security

This section describes general considerations for database security and introduces the security
facilities provided by Adabas and the Adabas subsystems. Detailed information about the
facilities discussed in this section may be found both in later chapters of this manual and in the
Adabas Security Manual.

Security Planning

Effective security measures must take account of the following:

� A system is only as secure as its weakest component. This may be a non-DP area of the system:
for example, failure to properly secure printed listings;

� It is rarely possible to design a “foolproof” system. A security system will probably be breached
if the gain from doing so is likely to exceed the cost;

� Security can be expensive. Costs include inconvenience, machine resources, and the time
required to coordinate the planning of security measures and monitor their effectiveness.

The cost of security measures is usually much easier to quantify than the risk or cost of a security
violation. The calculation may, however, be complicated by the fact that some security
measures offer benefits outside the area of security. The cost of a security violation depends on
the nature of the violation. Possible types of cost include

� loss of time while the violation is being corrected;

Database Design
2

63

� penalties under privacy legislation, breach of contracts, and so on;

� damage to relationships with customers, suppliers, employees, and so on.

Password Security

Password security allows the DBA to control a user’s use of the database by

� restricting the user to certain files;

� specifying for each file whether the user can access and update, or access only;

� preventing the user from accessing or updating certain fields while allowing access or update
of other fields in the same file;

� restricting the user’s view of the file to records that contain specified field values (for example,
department code).

The DBA can assign a security level to each file and each field within a file. In Figure 2-6, x/y
indicates the access/update security level. The value 0/0 indicates no security.

File Fields

1 (2/3) AA (0/0) BB (4/5)

2 (6/7) LL (6/7) MM (6/9)

3 (4/5) XX (4/5) YY (4/5)

4 (0/0) FF (0/0) GG (0/15)

Figure 2-6: File Security Table

A user must supply an appropriate password to access/update a secured file. In Figure 2-7, x/y
indicates the password access/update authorization level.

Passwords

ALPHA BETA

File 1 2/3 4/5

File 2 0/0 6/7

File 3 4/5 0/0

Figure 2-7: Password Table

Adabas DBA Reference Manual
2

64

Assuming the files, fields, and passwords shown in Figure 2-6 and Figure 2-7, the following
statements are true:

� Password ALPHA

– can access and update field AA in file 1, but not field BB;

– can access and update all fields in file 3;

– cannot access or update file 2.

� Password BETA

– can access and update all fields in file 1;

– can access all the fields in file 2 and can update field LL, but not field MM;

– cannot access or update file 3.

� No password is required to access any field in file 4, or to update field FF.

� Field GG in file 4 can be read only. Its update security level is 15 and the highest possible
authorization level is 14.

If password BETA can access a field that password ALPHA cannot, then password BETA can
also access all the fields in the same file that password ALPHA can access. There is no way in
which ALPHA can be authorized to access field AA but not field BB and password BETA to
access BB but not AA. The same restriction applies to update (although not necessarily to the
same combinations of fields or to the advantage of the same password). ALPHA could be
permitted to update all the fields which BETA can update and some others which BETA cannot
update.

This restriction does not apply to file-level security. For example, ALPHA can use file 3 but not
file 2, and BETA can use file 2 but not file 3. When a record is being added to a file, Adabas
only checks the update security level on those fields for which the user is supplying values. For
example, the password ALPHA could be used to add a record to file 1 provided that no value
was specified for field BB. This could represent the situation where, for example, a customer
record is only to be created with a zero balance. For record deletion, the password provided must
have an authorization level equal to or greater than the highest update security level present in
the file. For example, an update authorization level of 9 is required to delete a record from file
2, and, it is not possible to delete records from file 4.

Database Design
2

65

Security by Value

It is also possible to limit access/update fields within a file based on the contents of the field in
the file. See the Adabas Security Manual for more information.

Ciphering

Adabas is able to cipher (encrypt) records when they are initially loaded into a file or when
records are being added to a file. Ciphering makes it extremely difficult to read the contents of
a copy of the database obtained from a physical dump of the disk on which the database is
contained. Ciphering applies to the records stored in Data Storage only. No ciphering is
performed for the Associator.

Adabas SAF Security

Adabas SAF Security, a selectable unit, can be used with Software AG’s Com-plete and with
the following non-Software AG security environments:

– CA-ACF2 (Computer Associates);

– CA-Top Secret (Computer Associates);

– RACF (IBM Corporation)

For more information about Adabas SAF Security, contact your Software AG representative.

Natural and Adabas Online System Security

The Natural Security system may also be used to provide extensive security provisions for
Adabas/Natural users. See the Natural Security Manual for additional information.

Access to the DBA facility Adabas Online System (AOS) can also be restricted. AOS Security
requires Natural Security as a prerequisite.

Adabas DBA Reference Manual
2

66

Recovery/Restart Design

This section discusses the design aspects of database recovery/restart. Proper recovery/restart
planning is an important part of the design of the system, particularly in a database environment.
Although Adabas provides facilities to perform both restart and recovery, the functions must be
considered separately.

Adabas Recovery

Recovery of database integrity has the highest priority; if a database transaction fails or must
be cancelled, the effects of the transaction must be removed and the database must be restored
to its exact condition before the transaction began.

The standard Adabas system provides transaction logic (called “ET logic”), extensive
checkpoint/logging facilities, and transaction-reversing “backout” processing to ensure
database integrity.

Restarting the database following a system failure means reconstructing the task sequence from
a saved level before the failure, up to and including the step at which the failure
occurred—including, if possible, successfully completing the interrupted operation and then
continuing normal database operation. Adabas provides a recovery aid that reconstructs a
recovery job stream to recover the database.

Recoverability is often an implied objective. Everyone assumes that whatever happens, the
system can be systematically recovered and restarted. There are, however, specific facts to be
determined about the level of recovery needed by the various users of the system. Recoverability
is an area where the DBA needs to take the initiative and establish necessary facts. Initially, each
potential user of the system should be questioned concerning his recovery/restart requirements.
The most important considerations are

� how long the user can manage without the system;

� how long each phase can be delayed;

� what manual procedures, if any, the user has for checking input/output and how long these take;

� what special procedures, if any, need to be performed to ensure that data integrity has been
maintained in a recovery/restart situation.

Database Design
2

67

Planning and Incorporating Recoverability

Once the recovery/restart requirements have been established, the DBA can proceed to plan the
measures necessary to meet these requirements. The methodology provided in this section may
be used as a basic guideline.

1. A determination should be made as to the level and degree to which data is shared by the various
users of the system.

2. The recovery parameters for the system should be established. This includes a predicted/actual
breakdown rate, an average delay and items affected, and items subject to security and audit.

3. A determination should be made as to what, if any, auditing procedures are to be included in
the system.

4. An outline containing recovery design points should be prepared. Information in this outline
should include

– validation planning. Validation on data should be performed as close as possible to its point
of input to the system. Intermediate updates to data sharing the record with the input will
make recovery more difficult and costly;

– dumps (back-up copies) of the database or selected files;

– user and Adabas checkpoints;

– use of ET logic, exclusive file control, ET data;

– audit procedures.

5. Operations personnel should be consulted to determine if all resources required for
recovery/restart can be made available if and when they are needed.

6. The final recovery design should be documented and reviewed with users, operations personnel,
and any others involved with the system.

Matching Requirements and Facilities

Once the general recovery requirements have been designed, the next step is to select the
relevant Adabas and non-Adabas facilities to be used to implement recovery/restart. The
following sections describe the Adabas facilities related to recovery/restart.

Adabas DBA Reference Manual
2

68

Transaction Recovery

Almost all online update systems and many batch update programs process streams of input
transactions which have the following characteristics:

� The transaction requires the program to retrieve and add, update, and/or delete only a few
records. For example, an order entry program may retrieve the customer and product records
for each order, add the order and order item data to the database, and perhaps update the
quantity-on-order field of the product record.

� The program needs exclusive control of the records it uses from the start of the transaction to
the end, but can release them for other users to update or delete once the transaction is complete.

� A transaction must never be left incomplete; that is, if it requires two records to be updated,
either both or neither must be changed.

End Transaction (ET) Command

The use of the Adabas ET command

� ensures that all the adds, updates, and/or deletes performed by a completed transaction are
applied to the database;

� ensures that all the effects of a transaction which is interrupted by a total or partial system failure
are removed from the database;

� allows the program to store up to 2000 bytes of user-defined restart data (ET data) in an Adabas
system file. This data may be retrieved on restart with the Adabas OP or RE commands. The
restart data can be examined by the program or TP terminal user to decide where to resume
operation;

� releases all records placed in hold status while processing the transaction.

Close (CL) Command

The Adabas CL command can be used to update the user’s current ET data (for example, to set
a user-defined “job completed” flag). Refer to the section User Restart Data on page 70 for
more information.

Database Design
2

69

Reading ET Data
After a user restart or at the start of a new user or Adabas session, ET data can be retrieved with
the OP command. The OP command requires a user ID, which Adabas uses to locate the ET
data, and a command option to read ET data.

The RE command can also be used to read ET data for the current or a specified user; for
example, when supervising an online update operation.

System or Transaction Failure
The autobackout routine is automatically invoked at the beginning of every Adabas session. If
a session terminates abnormally, the autobackout routine removes the effects of all interrupted
transactions from the database up to the most recent ET. If an individual transaction is
interrupted, Adabas automatically removes any changes the transaction has made to the
database. Each application program can explicitly back out its current transaction by issuing the
Adabas BT command.

Limitations of Adabas Transaction Recovery
The transaction recovery facility recovers only the contents of the database. It does not recover
TP message sequences, reposition non-Adabas files, or save the status of the user program.

It is not possible to back out the effects of a specific user’s transactions because other users may
have performed subsequent transactions using the records added or updated by the first user.

Adabas Checkpoint Commands
Some programs cannot conveniently use ET commands because

� the program would have to hold large numbers of records for the duration of each transaction.
This would increase the possibility of a deadlock situation (Adabas automatically resolves such
situations by backing out the transaction of one of the two users after a user-defined time has
elapsed, but a significant amount of transaction reprocessing could still result), and a very large
Adabas hold queue would have to be established and maintained;

� the program may process long lists of records found by complex searches; restarting part of the
way through such a list may be difficult.

Such programs can use the Adabas checkpoint command (C1) to establish a point to which the
file or files the program is updating can be restored if necessary.

Adabas DBA Reference Manual
2

70

Exclusive File Control

A user can request exclusive update control of one or more Adabas files. Exclusive control is
requested with the OP command and will be given only if the file is not currently being updated
by another user. Once exclusive control is assigned to a user, other users may read but not update
the file. Programs that read and/or update long sequences of records, either in logical sequence
or as a result of searches, may use exclusive control to prevent other users from updating the
records used. This avoids the need for placing each record in “hold” status.

Checkpointing Exclusively Controlled Files

Exclusive control users may or may not use ET commands. If ET commands are not used,
checkpoints can be taken by issuing a C1 command.

System or Program Failure

In the event of a system or program failure, the file or files being updated under exclusive control
may be restored using the BACKOUT function of the ADARES utility. This utility is not
automatically invoked and requires the Adabas data protection log as input. This procedure is
not necessary if the user uses ET commands (see the section Transaction Recovery).

Limitations of Exclusive File Control

The following limitations apply to exclusive file control:

� Recovery to the last checkpoint is not automatic, and the data protection log in use when the
failure occurred is required for the recovery process. This does not apply if the user issues ET
commands.

� In a restart situation following a system failure, Adabas does not check nor prevent other users
from updating files which were being updated under exclusive control at the time of the system
interruption.

User Restart Data

The Adabas ET and CL commands provide an option of storing up to 2000 bytes of user data
in an Adabas system file. One record of user data is maintained for each user. This record is
overwritten each time new user data is provided by the user. The data is maintained from session
to session only if the user provides a user identification (user ID) with the OP command.

Database Design
2

71

The primary purpose of user data is to enable programs to be self-restarting and to check that
recovery procedures have been properly carried out. The type of information which may be
useful as user data includes the following:

� The date and time of the original program run and the time of last update. This will permit the
program to send a suitable message to a terminal user, console operator, or printer to allow the
user and/or operator to check that recovery and restart procedures have operated correctly. In
particular, it will allow terminal users to see if any work has to be rerun after a serious overnight
failure of which they were not aware.

� The date of collection of the input data.

� Batch numbers. This will enable supervisory staff to identify and allocate any work that has
to be reentered from terminals.

� Identifying data. This data can be a way for the program to “decide” where to restart. For
example, a program driven by a logical sequential scan needs to know the key value at which
to resume.

� Transaction number/input record position. This may allow an interactive user or batch
program to locate the starting point with the minimum of effort. Although Adabas returns a
transaction sequence number for each transaction, the user also may want to maintain a
sequence number because

– after a restart, the Adabas sequence number is reset;

– if transactions vary greatly in complexity, there may not be a simple relationship between
the Adabas transaction sequence number and the position of the next input record or
document;

– if a transaction is backed out by the program because of an input error, Adabas does not
know whether the transaction will be reentered immediately (it may have been a simple
keying error) or rejected for later correction (if there was a basic error in the input
document or record);

� Other descriptive or intermediate data; for example, totals to be carried forward, page
numbers and headings of reports, run statistics.

� Job/batch completed flag. The system may fail after all processing has been completed but
before the operator or user has been notified. In this case, the operator should restart the program
which will be able to check this flag without having to run through to the end of the input. The
same considerations apply to batches of documents entered from terminals.

� Last job/program name. If several programs must update the database in a fixed sequence,
they may share the same user ID and use user data to check that the sequence is maintained.

Adabas DBA Reference Manual
2

72

A user’s own data can be read with either the OP or RE command. User data for another user
can be read by using the RE command and specifying the other user’s ID. User data for all users
can be read in logical sequential order using the RE command with a command option; in this
case, user IDs are not specified.

The Adabas Recovery Aid

When a system failure disrupts database operation, the Adabas Recovery Aid can create a job
stream that reconstructs the database to the point of failure.

The Recovery Aid combines the protection log (PLOG) and the archived database status from
previous ADASAV operations with its own recovery log (RLOG) information to reconstruct the
job sequence. The result is a reconstructed job statement string (recovery job stream) that is
placed in a specially named output dataset.

The two major parts of the Adabas Recovery Aid are the recovery log (RLOG) and the recovery
aid utility ADARAI. The RLOG is formatted like other Adabas files, using ADAFRM, and then
defined with the ADARAI utility.

The DBA must run the Recovery Aid utility, ADARAI, to

� define the RLOG and set up the Recovery Aid environment;

� display current RLOG information;

� create the recovery job stream.

The Recovery Log (RLOG)

The recovery log (RLOG) records the essential information that, when combined with the
PLOG, is used by the ADARAI utility’s RECOVER function to rebuild a job stream to recover
and restore the database status up to the point of failure.

The RLOG information is grouped in “generations”, where each generation comprises the
database activity between consecutive ADASAV SAVE, RESTORE (database) or RESTORE
GCB operations. The RLOG holds a minimum of four consecutive generations, up to a
maximum value specified when the RLOG is activated; the maximum is 32. If RLOG space is
not sufficient to hold the specified number of generations, the oldest generation is overwritten
with the newest in “wraparound” fashion.

Database Design
2

73

The RLOG file is formatted like other database components by running the ADAFRM utility
(SIZE parameter), and then defined using the PREPARE function of the Recovery Aid ADARAI
utility (with the RLOGSIZE parameter). The space required for the RLOG file is approximately
10 cylinders of 3380 or equivalent device space.

The ADARAI PREPARE function must be performed just before the ADASAV SAVE run that
begins the first generation to be logged. After ADARAI PREPARE is executed, all subsequent
nucleus and utility jobs that update the database must specify the RLOG file. Of course, the
RLOG file can be included in any or all job streams, if desired.

The RLOG file job statement should be similar to the following:

//DDRLOGR1 DD DISP=SHR,DSN=... .RLOGR1

Starting the Recovery Aid

The activity of the Recovery Aid and RLOG logging begins when the first ADASAV
SAVE/RESTORE database or RESTORE GCB function is executed following ADARAI
PREPARE.

All activity between the first and second ADASAV SAVE/RESTORE database and/or
RESTORE GCB operations following the ADARAI PREPARE operation belongs to the first
generation. When viewing generations with the ADARAI utility’s LIST function, generations
are numbered relatively in ascending order beginning with the oldest generation.

For more detailed information on setting up the Recovery Aid, see the chapter Restart and
Recovery in the Adabas Operations Manual and the ADARAI utility description in the Adabas
Utilities Manual.

Adabas DBA Reference Manual
2

74

Multiclient Support

The Adabas multiclient feature stores records for multiple users or groups of users in a single
Adabas file. This feature is specified at the file level. It divides the physical file into multiple
logical files by attaching an owner ID to each record. Each user can access only the subset of
records that is associated with the user’s owner ID. The file is still maintained as a single
physical Adabas file.

The Adabas nucleus handles all database requests to multiclient files.

The Owner Concept
Each record in a multiclient file has a specific owner, which is identified by an internal owner
ID attached to each record (for any installed external security package such as RACF or CA-Top
Secret, a user is still identified by either Natural ETID or LOGON ID). The owner ID is assigned
to a user ID. A user ID can have only one owner ID, but an owner ID can belong to more than
one user.

Figure 2-8 shows examples of the ETID/owner ID relationship.

ETID Owner ID

USER1 1 More than one user can use the same owner ID.

USER2 1 Here, USER1, USER2 and USER3 share the same

USER3 1 owner ID and therefore the same records.

. . .

USER4 2

Figure 2-8: Relationship of ETID to Owner ID

The relationship between the user ID and the owner ID is stored in the profile table in the Adabas
checkpoint file. The DBA maintains the profile table using Adabas Online System/Basic
Services (AOS), a prerequisite for the multiclient feature.

The relation between user ID and owner ID is 1:1 or n:1; either a single user or group of users
can be assigned to one owner ID. Record isolation is always performed on the owner ID level.

The owner ID has a fixed length of up to 8 bytes (alphanumeric). The length is defined by the
user during file creation; it can be changed only by unloading and reloading the multiclient file.
Each owner ID must be less than or equal to the length assigned for the file; otherwise, a nonzero
response code occurs. To avoid wasting space, make the owner ID no larger than necessary.

Database Design
2

75

The tables in Figure 2-9 show an example of owner isolation for a group of eight file records.

ISN Owner ID Record

1 1 .data. Example for a physical

2 2 .data. Adabas file with

3 1 .data. records owned by

4 3 .data. different users

5 2 .data.

6 3 .data.

7 — no data —

8 1 .data.

ISN Record ISN Record

1 .data. 1 — no data —

2 — no data — 2 .data.

3 .data. 3 — no data —

4 — no data — 4 — no data —

5 — no data — 5 .data.

6 — no data — 6 — no data —

7 — no data — 7 — no data —

8 .data. 8 — no data —

File as seen by a user
with an owner ID=1

File as seen by a user
with an owner ID=2

Figure 2-9: Owner Isolation

Super Users

A super-user owner ID provides access to all records in a multiclient file. A super-user owner
ID begins with an asterisk (*). Adabas allows users with such an owner ID to “match” with any
other owner ID, allowing the user to read all records in a file. More than one super-user owner
IDs, each beginning with “*” and allowing identical privileges, can be defined for a multiclient
file.

Adabas DBA Reference Manual
2

76

A super-user owner ID applies only to Lx read commands and nondescriptor search (Sx)
commands. Descriptor search commands by a super user return only the records having the
super user’s owner ID. Data records or index values stored by a super user are labeled with the
super user’s owner ID.

Note:
If a super-user issues an L3 or L9 command, the value start option is ignored; that is, Adabas
always starts at the very beginning of the specific descriptor.

Program Compatibility

No changes to an existing application program are needed to use it in a multiclient environment;
however, a user ID must be supplied in the Additions 1 field of the Adabas control block of each
open (OP) call made by a user who addresses a multiclient file. This allows Adabas to retrieve
the owner ID from the checkpoint file. Otherwise, the application program neither “knows nor
cares” whether a multiclient file or a standard Adabas file is being accessed.

Support for Soft Coupling

Multiclient support is provided for soft coupling.

Data and Index Structures

The data and index structures of a multiclient file differ from those of standard Adabas files.

Data Storage

A Data Storage (DATA) record in a standard file has the following structure:

ll ISN compressed record

ISN length is always 4 bytes

Length of the total record requires 2 bytes

Database Design
2

77

A Data Storage record in a multiclient file has the following structure:

ll ISN owner ID compressed record

The length of the owner ID is user-defined (up to 8 bytes)

ISN length is always 4 bytes

Length of the total record requires 2 bytes

Figure 2-10: Comparison of Normal and Multiclient Record Formats

Associator

Every normal index and upper index value for a multiclient file is prefixed by the owner ID:

ll owner ID DE value ISN count ISN list

3 or 4 bytes per ISN

Number of ISNs following (1 or 2 bytes)

Descriptor value

owner ID, length as specified during file creation

One-byte length of the DE value, including owner ID length

Figure 2-11: Normal Index Element Structure

Figure 2-12 illustrates a multiclient index structure. If a single descriptor value points to more
than one Data Storage record, Adabas stores this extended index value only once, followed by
the list of ISNs. If the same descriptor value for different owner IDs is to be stored, then multiple
entries are made in the index.

Adabas DBA Reference Manual
2

78

ISN Owner ID NAME

1 1 SMITH

2 2 SMITH

3 1 SMITH The field “NAME” is a

4 3 JONES descriptor.

5 2 JONES

6 3 HARRIS

7 — not stored —

8 1 HARRIS

Owner ID DE value ISN count ISN list

1 HARRIS 1 8 This is the index for the

1 SMITH 2 1,3 descriptor NAME. The

2 JONES 1 5 sort sequence of values is:

2 SMITH 1 2 owner ID | (DE–value)

3 HARRIS 1 6

3 JONES 1 4

Figure 2-12: Index Structure Example

Notes:

1. Every type of descriptor is prefixed by the owner ID: simple descriptors, sub/superdescriptors,
phonetic, and hyperdescriptors. The owner ID prefix is not counted as a parent field for super-
and hyperdescriptors. The maximum number of parent fields is not affected.

2. The maximum length of a descriptor value, including the owner ID, is 253 bytes.

3. A super-user reading index values in L3/L9 sequence gets values in sorting order by owner ID:
the values for the lowest owner ID first, then the values for the next higher owner ID, and so
on. Values for each owner ID are sorted in ascending order.

Database Design
2

79

Performance Considerations

The multiclient feature causes no added processing overhead for find (S1,S2), read-logical (L3)
and histogram (L9) commands. The index structure permits specific record selection, and there
is no postselection procedure in the Data Storage.

If the selection is done on the Data Storage, Adabas must read the record and check the owner
ID. If the record’s owner ID does not match the current user’s owner ID, the record is skipped.
This might slow down a read-physical (L2) and a read-by-ISN (L1 with I option) command or
a nondescriptor search command.

User Profile Table

The owner ID is part of the user’s profile record, which is stored in the Adabas profile table. The
profile is maintained using the Adabas Online System. See the Adabas Online System Manual
for more information.

Possible Adabas Response Codes

Calls to multiclient files can result in the following non-zero Adabas response codes, which
indicate that an error has occurred:

Read and Update Operation If a user tries to read or change a multiclient file’s record us-
ing an owner ID that does not apply to the record, Adabas re-
turns either response code 3 or 113, depending on the type of
read or update operation.

“Add Record” Operation If a user has an owner ID that is either blank or too long for
the owner ID length assigned to the multiclient file, Adabas
returns response code 68 if this owner tries to add a new re-
cord.

Blank or Missing Owner IDs A user with a blank or missing owner ID receives response
code 3 or 113 when trying to access a multiclient file.

Adabas DBA Reference Manual
2

80

Utility Support for Multiclient Files

In general, multiclient files are transparent to Adabas utility processing. Special functions of
the ADALOD and ADAULD utilities support the migration of an application from a standard
to a multiclient environment.

The ADALOD Utility LOAD Function

Two ADALOD LOAD parameters LOWNERID and ETID support multiclient files. The
parameters work together to define owner IDs and determine whether a file is a multiclient file.

LOWNERID specifies the length of the internal owner ID values assigned to each record for
multiclient files.

Valid length values are 0–8. In combination with the ETID parameter, the LOWNERID
parameter can be used to reload a standard file as a multiclient file, change the length of the
owner ID for the file, or remove the owner ID from the records of a file.

If the LOWNERID parameter is not specified, the length of the owner ID for the input file (if
any) remains the same.

ETID assigns a new owner ID to all records being loaded into a multiclient file, and must be
specified if the input file contains no owner IDs; that is, the input file was not unloaded from
a multiclient source file.

Figure 2-13 illustrates the effects of LOWNERID and ETID settings.

LOWNERID Parameter
Setting:

Owner ID Length in Input File:

0 2

0 Keep as nonmulticlient file Convert into a nonmulticlient
file

1 Set up multiclient file (ETID) Decrease owner ID length

2 Set up multiclient file (ETID) Keep owner ID length

3 Set up multiclient file (ETID) Increase owner ID length

(LOWNERID not specified) Keep as a nonmulticlient file Keep as a multiclient file

Figure 2-13: Valid ETID and LOWNERID Parameter Combinations and Effects

Database Design
2

81

Where Figure 2-13 indicates “(ETID)” in the “owner ID length...0” column, the ETID
parameter must specify the user ID identifying the owner of the records being loaded. The owner
ID assigned to the records is taken from the user profile of the specified user ID. In the “owner
ID length...2” column the ETID parameter is optional; if ETID is omitted, the loaded records
keep their original owner IDs.

Note:
If the ETID parameter is used, the ADALOD utility requires an active nucleus. The nucleus will
translate the ETID value into the internal owner ID value.

The ADALOD Utility UPDATE Function

When executing the UPDATE function, ADALOD keeps the owner ID length previously
defined for the file being updated. The owner IDs of the records being added are adjusted to the
owner ID length defined for the file. The owner IDs of the loaded records or of any new records
must fit into the existing owner ID space.

Examples:

ADALOD LOAD FILE=20,LOWNERID=2,NUMREC=0

—creates file 20 as a multiclient file. The length of the internal owner ID is two bytes, but no
actual owner ID is specified. No records are actually loaded in the file (NUMREC=0).

ADALOD LOAD FILE=20,LOWNERID=2,ETID=USER1

—creates file 20 as a multiclient file and loads all supplied records for user USER1. The length
of the internal owner ID is two bytes.

ADALOD UPDATE FILE=20,ETID=USER2

—performs a mass update to add records to file 20, a multiclient file. Loads all the new records
for USER2.

Adabas DBA Reference Manual
2

82

The ADAULD Utility

The ADAULD utility unloads records from an Adabas file to a sequential output file. This output
file can then be used as input to a subsequent ADALOD operation.

If a multiclient file is unloaded, the output file contains all the unloaded records with their owner
IDs. This information can either be retained by the subsequent ADALOD operation, or be
overwritten with new information by the ADALOD ETID parameter. Any differences in
LOWNERID parameter values for the unloaded and newly loaded file are automatically
adjusted by ADALOD.

The ETID parameter of ADAULD can be used to restrict UNLOAD processing to only the
records owned by the specified user. If the ETID parameter is omitted, all records are unloaded.
If the SELCRIT/SELVAL parameters are specified for a multiclient file, the ETID parameter
must also be specified.

Example:

ADAULD UNLOAD FILE=20,ETID=USER1

—unloads all records owned by USER1 in physical sequence.

The ADACMP Utility

The ADACMP utility either compresses user data from a sequential input file into the Adabas
internal structure, or decompresses Adabas data to a sequential user file. The COMPRESS
function makes no distinction between standard and multiclient files, processing both in exactly
same way. The DECOMPRESS function can decompress records selectively if the INFILE
parameter specifies a multiclient file and a valid ETID value is specified.

The DECOMPRESS function skips the owner ID, if present. The output of a DECOMPRESS
operation on a multiclient file contains neither owner ID nor any ETID information.

If the INFILE parameter specifies a multiclient file for the DECOMPRESS function,
decompression can be limited to records for a specific user using the ETID parameter.
ADACMP then reads and decompresses records for the specified user. If the ETID parameter
is not specified when decompressing a multiclient file, all records in the file are decompressed.

Database Design
2

83

Example:

ADACMP DECOMPRESS INFILE=20,ETID=USER1

—decompresses records which are owned by USER1 from file 20 to a sequential output file.

Expanded Files

An expanded file is a logical file comprising one or more physical component files. Each
component file contains records numbered by logical instead of physical ISN numbers. These
physical component files must have

� identical field definition tables (FDTs); and

� different logical ISN ranges defined by the file’s MINISN and MAXISN parameters. The ISN
ranges cannot overlap.

The component files are chained together in sequence according to their ascending ISN ranges.
The file with the lowest ISN range is called the “anchor” file; its file number is the number of
the whole expanded file.

An expanded file can comprise up to 128 component files; it cannot exceed 4,294,967,294
records. An Adabas component file with 3-byte ISNs can contain a maximum of 16,777,215
records; a component file with 4-byte ISNs can contain 4,294,967,294 records.

Note:
Now that Adabas supports larger file sizes and a greater number of Adabas physical files and
databases, the need for expanded files has, in most cases, been removed.

Expanded files are supported by the Adabas

� command that processes ISN lists, S8.

� sort commands S2 and S9. Before using this feature, investigate how it will affect database
performance and impact users.

� prefetch/multifetch functions, which are enhanced for ET/BT support during expanded file
processing.

Adabas DBA Reference Manual
2

84

Defining Expanded Files
Using ADALOD

Expanded files are defined at load time. Each physical component file is loaded separately using
the ADALOD LOAD function. For all but the first component file, the ANCHOR parameter
must be specified to refer to the anchor file. ADALOD LOAD then performs the following tasks:

� Compares the FDT of the new file to the FDT of the anchor file to ensure that they are the same.

� Checks the new ISN range (MINISN to MAXISN for the new component file) against the ISN
ranges of the anchor and all other component files to ensure that there is no duplication;

� Checks for specification of the NOACEXTENSION parameter (Address Converter extensions
are not permitted in component files);

� Checks that the MAXRECL parameter of the new component file is equal to that for the existing
anchor file. All component files must have the same MAXRECL value.

� Loads the new component file, and;

� Links the new component file into the expanded file chain.

Example:

ADALOD LOAD statements define an expanded file (only the relevant parameters are shown):

ADALOD LOAD FILE=11,NOACEXTENSION
ADALOD MINISN=1,MAXISN=16000000
ADALOD ...

ADALOD LOAD FILE=23,NOACEXTENSION
ADALOD ANCHOR=11
ADALOD MINISN=36000001,MAXISN=50000000
ADALOD ...

ADALOD LOAD FILE=17,NOACEXTENSION
ADALOD ANCHOR=11
ADALOD MINISN=20000001,MAXISN=36000000

This example loads file 11 as an expanded file comprising:

File 11, ISN range: 1–16,000,000

File 17, ISN range: 20,000,001–36,000,000

File 23, ISN range: 36,000,001–50,000,000

Database Design
2

85

Using the Online System

An expanded file can also be defined using the Adabas Online System Define File function. This
function creates a new, empty file that can be specified as an anchor or component file for an
expanded file. Existing files can be chained together using the Expanded File Maintenance
function.

Rules for Defining Expanded Files

1. The NOACEXTENSION parameter must be set to prevent any extension of the Address
Converter (i.e., increase to MAXISN) for the specified file.

2. The MINISN parameter must be specified when loading a component file for an expanded file.

3. The file number for the component file can be freely chosen.

4. A single file is loaded as an expanded file when the ANCHOR and FILE parameters specify the
same file number.

5. An existing single file which is to be expanded may be referenced as the anchor file when the
second component file is loaded. ADALOD then sets NOACEXTENSION for the first file, and
makes it the anchor file.

Note:
An anchor file created in this way loses its anchor status when all component files are removed.
If necessary, you can insert the file into itself to reestablish its anchor status.

6. The ISN ranges for the component files cannot overlap, but there may be gaps of unused ISNs
between file ranges.

7. The component files can be loaded in any sequence.

8. If a new component file is loaded that has an ISN range lower than the range of the current anchor
file, the newly loaded file becomes the new anchor file. The ANCHOR parameter of any
component file loaded thereafter must refer to the new anchor file.

Adabas DBA Reference Manual
2

86

Inserting a Component File

Component files can be inserted into an expanded file using the ADALOD LOAD function as
described on page 84 or using Adabas Online System.

Using the online system, a new file can be created and inserted into an expanded file using the
Define File function. A file that already exists can be inserted into an expanded file using the
Insert Component File function.

Refer to the section Rules for Defining Expanded Files on page 85 for possible effects of
adding a component file.

Removing a Component File

A component file may be both removed from the expanded file and deleted using the Adabas
Online System Delete File function. To remove a component file from the expanded file chain
without deleting the file, the Adabas Online System Remove Component File function can be
used.

Refer to the section Rules for Defining Expanded Files on page 85 for possible effects of
removing a component file.

Deleting Expanded Files

The Adabas Online System Delete File function also allows you to delete the complete
expanded file; that is, to delete the anchor and all component files. The ADADBS utility’s
DELETE function can also be used to delete the complete expanded file.

Inspecting an Expanded File

In addition to the normal information about individual files, the report produced by the
ADAREP utility shows the component file list for each expanded file in the database. The
expanded file information itself is also available using the Adabas Online System Display File
function.

Database Design
2

87

Expanded Files and the Adabas Nucleus

A user call that refers to an expanded file is automatically directed to the appropriate physical
component file by the Adabas nucleus. The user or application receives no indication that the
selected file is an expanded file.

If the file number in the Adabas control block specifies the component file of an expanded file,
the call is interpreted as being for the complete expanded file. Thus, user applications that
accessed an existing component file in the past need not be changed if that file is integrated into
an expanded file: the calls automatically apply to the complete expanded file. However, for
convenience Software AG recommends that calls refer to the anchor file.

If a function performed on an expanded file produces results from more than one component
file, those results are combined to produce a single result. For example, an L2 command (read
physical sequential) for an expanded file is performed on each component file in sequence,
beginning with the anchor file. Upon reaching the end-of-file for a component file, the L2
automatically continues with the next component file. The results are accumulated sequentially
from all files that were read.

On the other hand, an L3 command (read logical sequential by descriptor) is performed as
separate parallel calls to each component file, and the results are merged into a single sequence
before they are returned to the caller.

Recommended Nucleus Changes for Expanded Files

To better accommodate parallel processing of component files for a single command, an
increase in the following ADARUN parameter values is recommended for the nucleus session:

Parameter Description

LI Length of the table of ISNs (TBI)

LQ Length of the table of sequential commands

LWP Length of the Adabas work pool area

LS Length of the search/sort area

NQCID Maximum number of active command IDs (CIDs) allowed per user

Adabas DBA Reference Manual
2

88

Restrictions When Using Expanded Files

The following limitations apply to programs running on an expanded file:

� Physical and/or soft coupling is not currently supported for expanded files.

� Multiclient support is not provided for expanded files.

� Once established, component files of an expanded file cannot be renumbered.

� When Adabas Security is used for an expanded file, the following should be the same for all
component files:

– protection profile

– password

– security-by-value profile

– cipher code

Expanded Files and Adabas Utilities

Although the expanded file is transparent to the user making Adabas calls, the DBA running the
Adabas utilities must be aware of the existence of an expanded file. Adabas utility functions
process expanded files in one of two ways:

� they process the complete expanded file; or

� they process component files.

Functions That Process Complete Expanded Files

Utility functions that process the entire expanded file include the following ADADBS,
ADARES, and ADASAV functions:

ADADBS DELETE Function

Deletes a complete expanded file only.

ADARES REGENERATE and BACKOUT FILE Functions

Process the expanded file as a whole whenever one of the component files is specified in the
file list. All other component files must then also be specified.

Database Design
2

89

ADASAV

� RESTORE (file) Function

Processes the expanded file as a whole whenever one of the component files is specified in the
file list. All other component files must then also be specified.

� SAVE (file) Function

Processes the expanded file as a whole whenever one of the component files is specified in the
file list. When running the SAVE (file) function while the Adabas nucleus is active, all other
component files must then also be specified.

Functions That Process Component Files

Utility functions that process component files include the following ADADBS, ADAINV,
ADALOD, ADAORD, ADAACK, ADADCK, ADAICK, ADAVAL, ADAULD, and ADASCR
functions.

ADAACK, ADADCK, ADAICK, ADAVAL, ADAULD

All functions of these utilities check single component files only.

ADADBS

� CHANGE / NEWFIELD Functions

These functions modify the field definition table (FDT) of a single component file only. The
DBA must perform the CHANGE or NEWFIELD function for all component files in the
expanded file. ADADBS prints a message indicating that the specified file is part of an expanded
file, and then completes with condition code 4.

� RELEASE Function

Releases the index for a descriptor of a single component file. The DBA must perform the
RELEASE function for all component files in the expanded file. ADADBS prints a message
indicating that the specified file is part of an expanded file, and then completes with condition
code 4.

Adabas DBA Reference Manual
2

90

ADAINV

� INVERT Function

Creates the index for a new descriptor of a single component file. The DBA must perform the
INVERT function for all component files in the expanded file. ADAINV prints a message
indicating that the specified file is part of an expanded file, and then completes with condition
code 4.

� COUPLE Function

The ADAINV COUPLE function is not available for expanded files.

ADALOD UPDATE Function

Adds records to/deletes records from a single component file. When performing a mass update
on some or all component files, the complete list of ISNs to be deleted from all component files
can be supplied. ADALOD automatically selects only the ISN values from the specified range
that are appropriate for the component file currently being processed. The same is true when
adding new records with USERISN=YES.

When new records are being added with USERISN=NO but no free ISN is found, the loader
cannot allocate a new Address Converter extent since the ISN range cannot be increased
(NOACEXTENSION is active for all component files). Instead, ADALOD creates the index as
though end-of-file had been reached. The remaining records not loaded may be added later to
another component file using the SKIPREC parameter.

ADALOD does not check for unique descriptor values across component file boundaries.

ADAORD REORFILE / REORFASSO / REORDATA Functions

Each reorder the respective areas of a single component file. Since the file is not logically
changed, the functions need not be performed on all component files of an expanded file.

ADASCR (Adabas Security) Functions

Defines security profiles for individual component files only. The protection, password,
security-by-value and cipher code for each component file should be defined the same for all
component files in an expanded file.

3

91

DEFINING AN ADABAS DATABASE

This chapter describes the procedure for defining an Adabas database. It is important for the
DBA to understand the information provided for each step before attempting to define a new
database.

Overview of Steps

Defining a new database involves the following steps:

Step 1. Estimate the space requirements for the database components.

Step 2. Allocate space for the components.

Step 3. Format the space.

Step 4. Define the characteristics of the database.

After you have completed these steps successfully, you can use the ADACMP and ADALOD
utilities to load user files into the database.

Step 1 : Estimate the Size of the Database

Components Required by the Nucleus

The Adabas nucleus requires three database components: Data Storage, an Associator, and a
Work area.

Data Storage

The Data Storage component contains the compressed data records of each file in the database.

Adabas DBA Reference Manual
3

92

Associator

The Associator contains elements for each file in the database and for the database as a whole.

For each file in the database, the Associator includes an inverted list, an address converter, and
a field definition table (FDT):

� The inverted list, which resolves Adabas search commands and reads records in logical
sequence, comprises the normal index (NI) and as many as 14 upper indexes (UI). All of the
values for each descriptor in the file are contained in the NI along with a count of the records
that contain each value and a list of the ISNs of those records. To increase search efficiency, UI
levels are automatically created by Adabas as required, each level to manage the next lower
level index. The first level UI, like the NI it manages, contains entries for only one descriptor
in each index block. All other UI levels contain entries for all descriptors in each index block.
Upper Indexes require a minimal amount of space (two blocks is the minimum).

� The address converter maps the logical identifier of a record (ISN) to the relative Adabas block
number (RABN) of the Data Storage block where the record is stored. It comprises a list of
RABNs in ISN order; for example, the fifteenth entry in the address converter contains the
RABN for ISN 15.

� The field definition table (FDT) defines the logical contents of an Adabas file. It contains the
name, level, length, format, and specified options for each field in the file.

For the database as a whole, the Associator includes storage management tables and coupling
lists:

� Storage management tables list the Associator and Data Storage blocks that are available for
allocation, along with the amount of unused space in each Data Storage block.

� Coupling lists exist for physically coupled files only are used to resolve search commands in
which descriptors from more than one file are used.

Work

The Work area stores information in four parts:

Part 1. Stores data protection information required by the routines for autorestart and autobackout.

Part 2. Stores intermediate results (ISN lists) of search commands.

Part 3. Stores final results (ISN lists) of search commands.

Part 4. Stores data related to distributed transaction processing.

 Defining an Adabas Database
3

93

Other Components
Sort and Temp Areas

The Adabas utilities ADAINV, ADALOD, and ADAVAL require two additional datasets, SORT
and TEMP, for sorting and intermediate storage of data.

The sizes of TEMP and SORT vary according to the utility function to be executed. These
datasets can be allocated during the job and then released, or permanent datasets can be
allocated and reused.

Logs

Adabas has the following optional logs:

� The command log (CLOG) records information from the control block of each Adabas
command that is issued. The CLOG provides an audit trail and can be used for debugging and
for monitoring usage of resources. Single, dual, or multiple (2–8) datasets can be used (multiple
datasets are recommended).

� The protection log (PLOG) records before-images and after-images of records and other
elements when changes are made to the database. It is used to recover the database (up to the
last ET) after restart. Single, dual, or multiple (2–8) datasets can be used (multiple datasets are
recommended).

� The recovery log (RLOG) records additional information that the Adabas Recovery Aid uses
to construct a recovery job stream.

Note:
Each CLOG, PLOG, and RLOG dataset is limited to 16,777,215 (x’FFFFFF’) blocks/RABNs.

General Space Requirements

The space requirements for the Associator (NI, UI, and AC) and Data Storage are calculated
automatically for each file by the ADALOD utility and the ADACMP utility, respectively. If
you want to allocate a specific amount of space to a file or estimate the space needed for a file
without actually executing these utilities, you can use the formulas provided in this chapter.

If the number and size of the files that will eventually be loaded into the database are not known
at the time that the database is established, it is not necessary to allocate a large amount of extra
space to the Associator and/or Data Storage, since the space may be increased subsequently by
using the ADD or INCREASE function of the ADADBS utility.

Adabas DBA Reference Manual
3

94

The initial allocation for Associator and Data Storage should, however, allow for the loading
of all currently planned files in addition to a reasonable amount of database expansion (adding
new files or updating existing files).

When estimating the Associator space, the following requirements for the database as a whole
must be added to the estimates calculated for each file within the database (normal index, upper
indexes, and address converter):

� The first 30 Associator blocks are used by Adabas for storing internal control information. Note
that the physical block sizes for Associator, Data Storage, and Work vary from one Adabas
component to another and according to the device type on which each component is located.

� Associator blocks equalling five times the value specified by the MAXFILES parameter are
reserved by Adabas for file control information. The MAXFILES parameter is set when running
the ADADEF utility.

General Procedure for Estimating Space

Step 1. Estimate the following requirements for each file; then add the estimates together for an
estimate for the whole database:

� Associator (normal index, upper indexes, address converter)

� Data Storage

Step 2. Estimate the following requirements for the database as a whole:

� Associator (space reserved by Adabas)

– First 30 blocks for internal control information;

– (MAXFILES � 5) blocks for file control information (the ADADEF parameter
MAXFILES specifies the maximum number of files that can be loaded into the database);

� Work area; sort area; temp area; logs

 Defining an Adabas Database
3

95

Estimation Formulas

The following sections provide formulas for estimating the space that should be allocated to
each component.

� Associator, in terms of

– normal index (NI)

– upper index (UI)

– address converter (AC)

� Data Storage

� Work, in terms of

– part 1 (data protection information)

– part 2 (intermediate results of search commands)

– part 3 (ISN lists from search commands)

– part 4 (data related to two-phase commit processing)

� sort space

Rules of Precedence in the Formulas

The formulas follow the normal rules of precedence; that is, expressions are evaluated in the
following order:

1. Elements in parentheses;

2. Multiplication and division operations;

3. Addition and subtraction operations;

4. Left to right (when elements have the same precedence level, the one on the left is evaluated
first).

Adabas DBA Reference Manual
3

96

Normal Index (NI)

Use the following formula to estimate the normal index space required for each descriptor in
the file:

NIRBYTES = ISNSIZE � AVUQVAL � RECORDS + DESCVALS � (AVLENG + 2)

—where

NIRBYTES is the space requirement for normal index, in bytes.

ISNSIZE is the length of ISNs in the file (3 or 4 bytes). The ISN length is specified by
the ADALOD parameter ISNSIZE.

AVUQVAL is the average number of unique values for the descriptor in each record.

RECORDS is the number of records to be contained in the file, which is specified by the
ADALOD parameter MAXISN.

DESCVALS is the number of unique values for the descriptor in the file.

AVLENG is the average length of the values for the descriptor.

AVUQVAL

AVUQVAL is less than or equal to 1 unless the descriptor is a multiple-value field (MU) or part
of a periodic group (PE).

If the descriptor is defined with the NU (null suppression) option, AVUQVAL equals the average
number of values per record minus the percentage of records that contain a null value (the field
is empty). For example, if each record has one value for the descriptor and 20 per cent of the
values are null

AVUQVAL = 1 – 0.2 = 0.8

Similarly, if an MU field has an average of 10 values per record and 20% of the values are null

AVUQVAL = 10 – 2 = 8

 Defining an Adabas Database
3

97

AVLENG

If the descriptor field is not defined with the FI (fixed length) option, AVLENG equals the
average compressed length of the field, including the length byte. If the descriptor is defined
with the FI option, AVLENG equals the standard length of the field.

ISNSIZE � AVUQVAL � RECORDS

ISNSIZE � AVUQVAL � RECORDS represents the space required to store the ISNs. It is the
important factor for descriptors that have many duplicate values.

DESCVALS � (AVLENG + 2)

DESCVALS � (AVLENG + 2) represents the space required to store the descriptor values. It
is the important factor for descriptors that have a large proportion of unique values.

Convert Bytes to Blocks

Use the following formula to convert bytes to blocks. Round the result up to the next block.

NIRBLOCKS = NIRBYTES / (ASSOBLKSIZE � (1 – PADFACTOR / 100))

—where

NIRBLOCKS is the NI space requirement, in blocks.

NIRBYTES is the NI space requirement, in bytes (from the NIRBYTES formula).

ASSOBLKSIZE is the ASSOR1 block length (see appendix A).

PADFACTOR is the ASSOR1 block padding factor, which is a percentage of the block
length expressed as a value between 1–90.

Adabas DBA Reference Manual
3

98

Examples

The following examples assume that ASSOR1 is stored on a 3380 device.

Example 1:

Descriptor AA has one value per record and no null values. There are 50 different values for AA
in the file. The average compressed length for the values is 3 bytes.

ISNSIZE=3
MAXISN=20000
PADFACTOR=10 (%)

NIRBYTES =
=
=

3 � 1 � 20,000 + 50 � (3 + 2)
60,000 + 250
60,250 bytes

NIRBLOCKS =
=
=

60,250 / (2004 � (1 – 0.1))
33.41
34 blocks

Example 2:

Descriptor BB has one value per record and no null values. There are 20,000 different values
for BB in the file. The average compressed length for the values is 10 bytes.

ISNSIZE=4
MAXISN=20000
PADFACTOR=10 (%)

NIRBYTES =
=
=

4 � 1 � 20,000 + 20,000 � (10 + 2)
80,000 + 240,000
320,000 bytes

NIRBLOCKS =
=
=

320,000 / (2004 � (1 – 0.1))
177.42
178 blocks

 Defining an Adabas Database
3

99

Example 3:

Descriptor CC is a null-suppressed multiple-value (MU) field with an average of 10 occurrences
and 3 null values per record. There are approximately 300 different values for CC in the file.
The average compressed length for the values is 4 bytes.

ISNSIZE=3
MAXISN=10000
PADFACTOR=5 (%)

NIRBYTES =
=
=

3 � 7 � 10,000 + 300 � (4 + 2)
210,000 + 1,800
211,800 bytes

NIRBLOCKS =
=
=

211,800 / (2004 � (1 – 0.05))
111.25
112 blocks

Example 4:

Descriptor DD is a null-suppressed field contained within a periodic group. DD contains an
average of 5 values per record; there is an average of 3 null values per record. There are 10
different values for DD in the file. The average compressed length for the values is 5 bytes.

ISNSIZE=4
MAXISN=10000
PADFACTOR=5 (%)

NIRBYTES =
=
=

4 � 2 � 10,000 + 10 � (5 + 2)
80,000 + 70
80,070 bytes

NIRBLOCKS =
=
=

80,070 / (2004 � (1 – 0.05))
42.06
43 blocks

Adabas DBA Reference Manual
3

100

Upper Index (UI)

Use the following formula to estimate the UI space required for each descriptor in the file:

UIRBYTES = NIRBLOCKS · (AVDESCLEN + ISNSIZE + RABNSIZE + 1)

—where

UIRBYTES is the UI space requirement, in bytes.

NIRBLOCKS is the NI space requirement, in blocks (from the NIRBLOCKS formula).

AVDESCLEN is the average compressed length of the values for the descriptor.

ISNSIZE is the length of ISNs in the file (3 or 4 bytes). The ISN length is specified by
the ADALOD parameter ISNSIZE.

RABNSIZE is the length of RABNs in the database (3 or 4 bytes). The RABNSIZE is spe-
cified for all files in a database when the database is defined.

Note:
RABNSIZE refers only to the length of the relative Adabas block number. It
does not refer to the block size.

Convert Bytes to Blocks

Use the following formula to convert bytes to blocks. Round the result up to the next block.

UIRBLOCKS = UIRBYTES / (ASSOBLKSIZE � (1 – PADFACTOR / 100))

—where

UIRBLOCKS is the UI space requirement, in blocks.

UIRBYTES is the UI space requirement, in bytes (from the UIRBYTES formula).

ASSOBLKSIZE is the ASSOR1 block length (see appendix A).

PADFACTOR is the ASSOR1 block padding factor, which is a percentage of the block
length expressed as a value between 1–90.

 Defining an Adabas Database
3

101

Example

This example assumes that the Associator is stored on a 3380 DASD; therefore, ASSOR1 has
2004 bytes per block.

The NI block requirement for this file is estimated to be 45 blocks. The average compressed
length of the values for the descriptor is 3 bytes. The database has 3-byte (24-bit) RABNs; the
file has 3-byte ISNs. The ASSOR1 block padding factor is 5 (%).

UIRBYTES =
=

45 � (3 + 3 + 3 + 1)
450 bytes

UIRBLOCKS =
=
=
=

450 / (2004 � (1 – 0.05))
450 / 1903.8
0.24
1 block (a minimum of 2 blocks must be allocated for the UI)

Address Converter (AC)

Use the following formula to estimate the address converter space required for the file. Round
the result up to the next whole block.

ACBLOCKS = ((MAXISN + 1) * RABNSIZE) / ASSOBLKSIZE

—where

ACBLOCKS is the space requirement for the address converter, in blocks.

MAXISN is the MAXISN setting for the file.

RABNSIZE is the length of RABNs in the database (3 or 4 bytes). The RABNSIZE is
specified for all files in a database when the database is defined.

Note:
RABNSIZE refers only to the length of the relative Adabas block number.
It does not refer to the block size.

ASSOBLKSIZE is the Associator block size (see appendix A).

Adabas DBA Reference Manual
3

102

Examples

The following examples assume that the Associator is stored on a 3380 DASD; ASSOR1 has
2004 bytes per block.

Example 1:

MAXISN=2000000
RABNSIZE=3

ACBLOCKS =
=
=
=

(2,000,000 � 3) / 2004
6,000,000 / 2004
2994.01
2995 blocks

Example 2:

MAXISN=2000000
RABNSIZE=4

ACBLOCKS =
=
=
=

(2,000,000 � 4) / 2004
8,000,000 / 2004
3992.02
3993 blocks

Data Storage

Use the following formula to estimate the space required for Data Storage. Round the result up
to the next whole block.

DATASTORAGE = MAXISN / ((DSBLKSIZE � (1 – (PADFACTOR / 100))) / AVRECLEN)

—where

 Defining an Adabas Database
3

103

DATASTORAGE is the space requirement for Data Storage, in blocks.

MAXISN is the MAXISN setting for the file.

DSBLKSIZE is the Data Storage block size, rounded down to the next integer (see
appendix A).

PADFACTOR is the Data Storage block padding factor, which is a percentage of the
block length expressed as a value between 1–90.

AVRECLEN is the average compressed record length.

Example

MAXISN = 1000000
Average compressed record length = 50
Model 3380 blocksize for DATA = 4820
Data Storage block padding factor = 5 (%)

DATASTORAGE =
=
=
=

1,000,000 / ((4820 � (1 – 0.05)) / 50)
1,000,000 / 91
10,989.01
10,990 blocks

How Adabas Allocates Work Space

When you allocate the Work dataset, allocate enough space for all four parts. The minimum
allowable Work space is 300 blocks. Three ADARUN parameters break up the space into parts
1–4 as follows:

� The ADARUN LP parameter specifies the size of Work part 1. The default setting is 1000
blocks; the minimum is 200. A database with little or no updating needs 500–1000 blocks. Work
part 1 begins with RABN 1; the last RABN is the value of LP.

� The ADARUN LWKP2 parameter specifies the size of Work part 2. If LWKP2=0 (the default),
Adabas calculates the size automatically, using the formula described in the section Work Part
2: Intermediate Search Results on page 106.

Adabas DBA Reference Manual
3

104

Work part 2 begins in the block following the last block of Work part 1; thus, the first RABN
of part 2 is given by

1 + LP

� The ADARUN LDTP parameter specifies the size of Work part 4 when ADARUN DTP=RM.
If LDTP=0 (the default), the length of Work part 4 is equivalent to the length of Work part 1
(ADARUN LP). If a non-zero value is specified, it must be greater than the value specified for
LP. If a smaller value is specified, Adabas changes it to equal the LP value.

Work part 4 begins in the block following the last block of Work part 2; thus, the first RABN
of part 4 is given by

1 + LP + LWKP2

� After allocating parts 1, 2, and possibly 4, Adabas allocates the remaining blocks to Work part
3. It is important that you allocate enough space to the Work dataset to leave at least 50 blocks
for part 3.

Work Part 1: Data Protection Information

The data protection area for all transactions running in parallel must fit into 1/4 of the Work part
1 (that is, LP) area. Following are general guidelines for determining the proper size for Work
part 1:

1. The total Work part 1 size should be four times the estimated size required for a single average
transaction in bytes times the maximum number of transactions that run in parallel. This value
is then divided by the Work block size (in bytes) minus 200 to convert bytes to blocks.

2. If some transactions are very long, then those transactions alone plus all short transactions
executed in parallel should be used to determine the size of a single average transaction.

3. The size of a single average transaction is determined by estimating the average number of
updates (modifications, additions, and deletions) per transaction and multiplying that number
by the estimated bytes required per update. To this is added space for ET data and for the ET
record in bytes.

4. The size required per update is determined by the average compressed record length in bytes
times 4 (before image, after image, and DVT space for each) plus 100 bytes for each protection
record header (that is, 100 times 4).

 Defining an Adabas Database
3

105

A formula that expresses these guidelines is

WK1= (4 � TASIZE � TAP) / (BLKSIZE – 200)

—where

WK1 is size of Work part 1 in blocks

TASIZE is the size of a single average transaction in bytes

TAP is the maximum number of transactions actually executed in parallel

BLKSIZE is the Work block size in bytes

TASIZE= (((4 � AVCRL) + 400) � UPDTA) + ETDATA + 100

—where

AVCRL is the average compressed record length in bytes

UPDTA is the average number of updates per transaction

ETDATA is the average length of ET data in bytes

Example

If AVCRL = 300 bytes, UPDTA = 4, and ETDATA = 200 bytes, then

TASIZE= (((4 � 300) + 400) � 4)+ 200 + 100 = 6700 bytes

If TAP = 100 and BLKSIZE = 5492, then

WK1 = (4 � 6700 � 100) / (5492 – 200) = 506.46 blocks

Adabas DBA Reference Manual
3

106

Work Part 2: Intermediate Search Results

Use the following formula to estimate the space required for the Work part 2 area. Round the
result up to the next whole block.

WORK2 = 22 + 2 � ((4 � RECORDS) / (BLKSIZE – 16))

—where

WORK2 is the Work part 2 space requirement, in blocks.

RECORDS is the number of records in the file with the most records. This number equals

TOPISN – MINISN + 1

—where

TOPISN is the highest ISN currently used in the file.

MINISN is the lowest ISN used in the file.

The MINISN value is specified with the ADACMP/ADALOD parameter
MINISN; 1 is the default. You can use the ADAREP utility to display the
TOPISN and MINISN values for the files in a database.

BLKSIZE is the block size of the device where the Work dataset is stored
(see appendix A).

Note:
An Adabas internal table requires one byte of storage for each Work part 2 block.

Example

The number of records in the largest file in the database is 500,000. The Work dataset is stored
on a 3380 device.

WORK2 =
=
=

22 + 2 � ((4 � 500,000) / (5492 – 16))
752.46
753 blocks

 Defining an Adabas Database
3

107

Work Part 3: ISN Lists from Search Commands

Adabas allocates to Work part 3 (resultant ISN lists) the Work space remaining after the
allocation of the part 1 (data protection information) and part 2 (intermediate results) areas.

The minimum requirement for this area is 50 blocks.

If insufficient space is provided for this area, Adabas may be unable to execute additional search
commands until the space currently occupied by ISN lists has been released. Consider the
following factors when estimating the space needed for the Work part 3 area:

� The number of concurrent search commands to be processed (each ISN list is stored in a separate
block), and the expected size of the resulting ISN lists (each ISN is stored as 4 bytes, regardless
of the ISNSIZE specified for the file);

� The number of saved ISN lists resulting from previous search commands with the
SAVE ISN LIST option which will be held concurrently;

� The amount of memory which will be required by Adabas as a result (each block allocated to
this area requires 4 bytes of memory).

Example

A maximum of 100 search commands with an average of 25 resulting ISNs per command are
to be processed concurrently during the session.

Adabas will need 100 blocks in the Work part 3 area.

Adabas DBA Reference Manual
3

108

Work Part 4: Data Related to Distributed Transaction Processing

Work part 4 maintains some of the global transactions involved in distributed processing. For
example, during phase one, a global transaction’s protection data may be copied from Work part
1 to Work part 4 to free space on Work part 1.

If an overflow of Work part 4 is pending, the nucleus can force a transaction termination. This
clears Work part 4 except for transaction IDs (XIDs) and local transaction status information.

The space allocated for Work part 4 must be at least that allocated for Work part 1:

LDTP>=LP

Whether a larger size is needed for Work part 4 depends on the applications running against the
database and on the system load.

Because the information maintained in Work part 4 cannot currently be moved to a different
area, you can alter the size of Work part 4 between sessions only as follows:

� you can decrease the size of Work part 4 if it was not used at all in the previous session.

� you can increase the size of Work part 4 if it was used in the previous session.

 Defining an Adabas Database
3

109

Sort

The following formulas estimate the sort dataset space used for sorting all values of a single
descriptor. Multiple descriptors are sorted successively: all values are sorted for the first
descriptor, then all values for the second descriptor, and so on. Therefore, estimate the space for
the largest possible descriptor sort; that will be enough for all descriptors.

Use the following formula to estimate the space required for the sort area:

DESCSPACE = (AVDESCLEN + (1 + ISNSIZE)) � NUMRECS � AVPEOCCUR � AVMVOCCUR

—where

DESCSPACE is the total descriptor space required, in bytes.

AVDESCLEN is the average compressed descriptor length, in bytes.

ISNSIZE is the size of the ISN being used (either 3 or 4).

NUMRECS is the number of records.

AVPEOCCUR is the average number of periodic group occurrences, if the descriptor is in
a periodic group. Otherwise, set this value to 1.

AVMVOCCUR is the average number of multiple-value field occurrences, if the descriptor
is a multiple-value field. Otherwise, set this value to 1.

Work Pool Size

Use the following formula to estimate the space required for the work pool:

LWPAVAIL = LWPSIZE – 1216 – (32 � SORTDEVTRKS) – SORTDEVBSIZ

—where

LWPAVAIL is the available part of the work pool space, in bytes.

LWPSIZE is the total work pool size, in bytes (the utility’s LWP parameter value).

SORTDEVTRKS is the number of sort device tracks per cylinder (see appendix A).

SORTDEVBSIZ is the sort device block size, in bytes.

Adabas DBA Reference Manual
3

110

Sorted Partial Sequences

To determine the space required for sorted partial sequences, use one of the following
calculations. The one to use depends on the AVDESCLEN value (average descriptor length)
used to calculate the DESCSPACE value (total descriptor space required).

� If AVDESCLEN is less than 12

LENGSEQ = (LWPAVAIL � (AVDESCLEN + (1 + ISNSIZE))) / 24

—where

LENGSEQ is the length of sorted partial sequences.

LWPAVAIL is the available Work pool space.

AVDESCLEN is the average compressed descriptor length, in bytes.

ISNSIZE is the size of the ISN being used (either 3 or 4).

� If AVDESCLEN is equal to or greater than 12

LENGSEQ = (LWPAVAIL � 2) / 3

—where

LENGSEQ is the length of sorted partial sequences.

LWPAVAIL is the available Work pool space.

Device Surfaces

Use the following formula to calculate the number of device surfaces rounded up to the next
integer:

SURFACES = (DESCSPACE / LENGSEQ) / SORTDEVTRKS

—where

SURFACES is the number of surfaces required for sort space, rounded up to the next
integer.

DESCSPACE is the total descriptor space required, in bytes.

LENGSEQ is the length of sorted partial sequences.

SORTDEVTRKS is the number of sort device tracks per cylinder (see appendix A).

 Defining an Adabas Database
3

111

Estimated Sort Size

Using the intermediate values calculated for LENGSEQ and SURFACES, compute the
estimated sort size as follows:

SORTSIZE = (SURFACES � SORTDEVTRKS � LENGSEQ � 2) / (SORTDEVBSIZ – 4)

—where

SORTSIZE is the estimated sort area size, in blocks. This value should be rounded up
to the next full cylinder.

SURFACES is the number of surfaces required for sort space, calculated earlier and
rounded up.

SORTDEVTRKS is the number of sort device tracks per cylinder (see appendix A).

LENGSEQ is the length of sorted partial sequences.

SORTDEVBSIZ is the sort device block size, in bytes.

Number of Descriptors Sorted

Use the following formula to estimate the number of descriptors that can be sorted in the
SORTSIZE space calculated in the previous formula (assuming the same descriptor definition
that was used when calculating DESCSPACE):

DESCOUNT = SURFACES � SORTDEVTRKS � LENGSEQ /
(AVDESCLEN + (1 + ISNSIZE))

—where

DESCOUNT is the number of descriptors defined in the earlier DESCSPACE calcula-
tion that can be held in the SORTSIZE space calculated above.

SURFACES is the number of surfaces required for sort space, calculated earlier and
rounded up.

SORTDEVTRKS is the number of sort device tracks per cylinder (see appendix A).

LENGSEQ is the length of sorted partial sequences.

AVDESCLEN is the average compressed descriptor length, in bytes.

ISNSIZE is the size of the ISN being used (either 3 or 4).

Adabas DBA Reference Manual
3

112

Step 2 : Allocate Space

1. Use standard operating-system procedures to allocate datasets for the following Adabas
components:

� Required by the Adabas nucleus:

– Associator (ASSO)

– Data Storage (DATA)

– Work area (WORK)

� Required by some Adabas utilities:

– sort area (SORT)

– temp area (TEMP)

� Optional (but recommended) logs:

– dual or multiple command log (CLOG)

– dual or multiple protection log (PLOG)

– recovery log (RLOG)

Normally, ASSO, DATA, and WORK are each allocated as a single operating system dataset.
However, you can allocate the Associator and Data Storage on up to five separate datasets each;
the datasets can be allocated on the same or different device types.

2. To minimize contention and distribute I/O activity more evenly across hardware channels, place
the ASSO, DATA, WORK, PLOG, and RLOG datasets on different physical volumes. If only
two volumes are available, place ASSO on one volume and DATA and WORK on the second.

The WORK and PLOG datasets should be on different volumes, since a PLOG I/O operation
is always followed by a WORK I/O operation.

The RLOG dataset should always be placed on a separate device of the same type.

Disk access time may be considerably reduced by separating TEMP from DATA, and SORT
from ASSO. When loading files containing 100,000 records or more, splitting SORT across two
volumes reduces disk arm movement.

3. Specify the disk space allocation in the job control (JCL/JCS or VM CONTROL minidisk) of
the format utility (ADAFRM). See the Adabas Utilities Manual for specific information and job
examples.

 Defining an Adabas Database
3

113

Examples
Example 1 : Database Allocation Using Two Volumes

�������� �������	

���� ����

���� 	�
�

���� ��
�

����

Example 2 : Database Allocation Using Three Volumes

�������� �������	 �������

���� ���� 	�
�

���� ��
� ����

����

Example 3 : Database Allocation When Loading a Large File

�������� �������	 �������
 �������� ��������

���� ���� ���� ���� ��
������������

���� ���� ��
������������ 	�
�

����

Performance Note

Software AG does not recommend using hardware compression (IDRC) for protection log files.
The ADARES utility BACKOUT function will run at least twice as long under OS/390 or z/OS
when processing compressed data. Also, the BACKOUT function is not supported for
compressed data on VSE/ESA, VM/ESA, or z/VM systems.

Adabas DBA Reference Manual
3

114

Step 3 : Format the Space

Before loading the first file into the database, use the ADAFRM utility to format the ASSO,
DATA, and WORK datasets. Refer to the Adabas Utilities Manual for information about the
ADAFRM utility.

Format TEMP and SORT before using any Adabas utility that requires them. You can allocate
and format temporary datasets and delete them after executing the utility, or allocate and format
permanent datasets for repeated use.

Note:
When using the Recovery Aid (including the RLOG), you must catalog all temporary datasets.
When running with the Recovery Aid, the general rule is to catalog temporary datasets in jobs
that require the Associator datasets.

Format the CLOG, PLOG, and RLOG datasets before starting the first session in which the
logging is to be performed.

Step 4 : Define Database Parameters

Once all database components have been physically allocated and formatted, use the ADADEF
utility to define database parameters such as database identification, maximum number of files,
system file assignment, and so on.

The sizes of the ASSO, DATA, and WORK datasets must be defined with ADADEF DEFINE
parameters. Note that defining the sizes to Adabas is different from allocating the space; the
datasets must be allocated and formatted before you can define them to Adabas. The sizes of
the other datasets are defined to Adabas as follows:

� TEMP and SORT: when you execute the utility that uses them;

� CLOG and PLOG: at the start of a nucleus session, with ADARUN parameters;

� RLOG: when logging begins, using the PREPARE function of the ADARAI utility.

Note:
Each log dataset (CLOG, PLOG, or RLOG) is limited to 16,777,215 (x’FFFFFF’)
blocks/RABNs.

4

115

DATABASE SPACE MANAGEMENT

This chapter provides the DBA with all pertinent information related to database space
management. Information is provided about

� Adabas physical and logical extents;

� Adabas relative block number (RABN);

� the role of the Adabas nucleus and utilities in allocating/deallocating space;

� using the database status report to monitor database space usage;

� potential space utilization problems and recommended action.

Adabas Physical Extents

An Adabas “physical extent” is a collection of physical blocks assigned to a given database
component (Associator, Data Storage, Work) during the definition of the database (see the
ADADEF utility, ASSOSIZE, DATASIZE and WORKSIZE parameters).

The space for a physical extent is allocated using the standard allocation procedures of the
operating system in use.

An Adabas physical extent may be allocated within a single operating system extent which
consists of a primary extent only, or may be allocated as a primary extent together with one or
more secondary extents. The secondary extents need not be contiguous to the primary extent
or to each other.

An Adabas physical extent may be contained on a single physical volume or may extend across
multiple volumes. The Associator and Data Storage components may each contain up to five
Adabas physical extents.

Adabas DBA Reference Manual
4

116

Relative Adabas Block Number (RABN)

Adabas information is stored in space allocated in “blocks”. A block’s size depends on

� the physical device on which the block is located; and

� the Adabas component to which the block is assigned.

For example, the default device type used by Adabas is the IBM 3380 disk. This device is
assumed in many utility and operating parameters as the device type unless another is specified.

When 3380 space is allocated for Adabas, it must be designated as Associator (ASSO), Data
Storage (DATA), the Work area (WORK), logging area (PLOG, CLOG, RLOG), sort area, or
temp area. A 3380 block allocated to ASSO contains 2004 bytes, but a 3380 block allocated to
DATA contains 4820 bytes. Block sizes are predefined for each device type and Adabas
component; appendix A lists block sizes by device type and component.

Adabas block sizes are not fixed by hardware; however, they are referred to as “physical”
blocks to coincide with the level of description used for physical block (FBA) devices.
Software AG tries to maintain consistent block definitions, by device type, from release to
release. However, in some cases the block size for a component type may change to
accommodate expanded Adabas facilities. Thus, a specific Adabas component (PLOG,
ASSO, etc.) may need to be reformatted before you can run a new Adabas release.

Adabas identifies and addresses each physical block within a database component by its
“relative Adabas block number” (RABN), which indicates the block’s position relative to the
beginning of the component. RABNs are assigned in ascending sequence in Data Storage,
Associator, or Work, starting with 1 for the first physical block in the first Adabas physical
extent (the first track of the first extent is not used). If multiple physical extents are used, the
RABN assignment continues across the physical extents.

The number of RABNs that can be assigned to ASSO and DATA depends on the RABNSIZE
parameter, which is specified when the database is defined. RABNSIZE specifies the length of
relative Adabas block numbers in the database (not the length of the block itself).

� If RABNSIZE=3 (block number is 24 bits or three bytes), the maximum number of RABNs is
16,777,215.

� If RABNSIZE=4 (block number is 31 bits or four bytes), the maximum number of RABNs is
2,147,483,646.

See appendix B of the Adabas Operations Manual for more information about RABNs.

Database Space Management
4

117

Adabas Logical Extents

An Adabas “logical extent” is a group of consecutive RABNs allocated by the Adabas nucleus
or an Adabas utility.

For each file loaded into the database, a minimum of one of each of the following types of
Adabas logical extents is allocated to the file:

Logical Extent Allocated from the physical extent . . .

Data Storage Data Storage

address converter Associator

normal index Associator

upper index Associator

Additional logical extents are allocated by the Adabas nucleus or an Adabas utility when
additional space is needed as a result of file updating.

The Associator and Data Storage components may each contain up to five Adabas logical
extents; however, the component physical files comprising Adabas expanded logical files are
limited to one address converter logical extent only.

Adabas Space Allocation and Deallocation

This section provides an overview of Adabas space allocation and deallocation procedures. A
full understanding of these procedures will help ensure correct and efficient database space
management.

Free Space Table

All space available for allocation is stored in the free space table (FST). This table contains all
RABN extents that are currently available for an allocation to any file.

Adabas DBA Reference Manual
4

118

Space Allocation by the Adabas Nucleus

When processing an add or update record command, the Adabas nucleus may need to allocate
an additional extent to any of the following file components:

� address converter

� normal index

� upper index

� Data Storage

Address Converter (AC)

The size of the address converter is initially defined by the MAXISN parameter in the ADALOD
utility. The actual “highest expected” ISN is slightly higher because the address converter is
stored in entire blocks.

Example:

If RABNSIZE=3, MAXISN=5000 on a model 3380 with 668 entries per block (2004/3) results
in 8 blocks. The highest ISN expected (before further expansion) is therefore 5343 (668 � 8 – 1).

If RABNSIZE=4, MAXISN=5000 on a model 3380 with 501 entries per block (2004/4) results
in 10 blocks. The highest ISN expected is therefore 5009 (501 � 10 – 1).

If the Adabas nucleus requires an additional extent for a file when executing N1 commands, the
allocation routine attempts to locate a new extent of 25% of the current size:

� If an unused extent between 25% and 28% can be found using the free space table (FST), that
space is taken immediately;

� If only longer extents are available in the FST, a new extent of exactly 25% is taken;

� If only smaller extents are available in the FST, the longest available extent is taken;

� If an additional AC extent is required, and the maximum has already been assigned, Adabas will
return an appropriate response code to the calling program;

� If a file has the attribute “one AC extent only” (e.g., if the file is an expanded file), an attempt
to allocate a second AC extent will cause a response code.

Database Space Management
4

119

Normal Index (NI), Upper Index (UI), Data Storage (DS)

For the purpose of allocating a new extent, the following formulas are used:

Z1 � MIN �2 · B,(E–U) · B
U
�

Z � MIN �MAX(Z1, B
8
� 10),1000000�

—where

B number of blocks currently allocated.

E highest ISN expected.

U highest ISN currently allocated.

If an extent found in the FST is contiguous with the end of a previous extent, it is allocated for
a maximum of “Z” blocks.

If no such extent can be found in the FST

� but an extent between Z and 9 * Z/8 is found, it is allocated.

� but an extent with more than 9 * Z/8 blocks is found, then a new extent is allocated with exactly
“Z” blocks.

� the longest extent in the FST is allocated as the new extent.

Additionally, if the MAXNI, MAXUI, or MAXDS parameter is specified for the current file,
the nucleus allocates no more than the specified maximum number of blocks for the NI, UI, or
DS, respectively.

Space Allocation with the ADADBS Utility
ADD/INCREASE Associator, Data Storage

If the physical extent for the Associator or Data Storage has been exhausted, the ADD or
INCREASE function (using Adabas Online System or the ADADBS utility) may be used to
provide additional physical space.

The ADD function requires the allocation of an additional dataset to the Associator or Data
Storage. The new dataset may be located on the same or a different device type than those
currently in use. Both the Associator and Data Storage may consist of no more than five datasets
each.

Adabas DBA Reference Manual
4

120

The INCREASE function results in the physical extension of an existing dataset. The new space
must, however, first be formatted using the ADAFRM utility. There is no restriction on the
number of times the INCREASE function may be used.

Following an ADD function, the new dataset must be formatted using the ADAFRM utility
before it can be used, and the appropriate changes must be made to all Adabas job control as
described in the Adabas Operations Manual.

After increasing Data Storage four times, it may be necessary to run the REORASSO function
of the ADAORD utility to reorder the Data Storage space table (DSST) to a single extent and
allow four more increases in Data Storage.

To permit formatting or reordering, the nucleus session terminates automatically following an
ADADBS ADD or INCREASE operation.

ALLOCATE Function

The ALLOCATE function (Adabas Online System or ADADBS utility) may be used to allocate
an extent of a specific size for any of the following file components:

� Data Storage

� address converter

� normal index

� upper index

It is also possible to specify where the extent is to be allocated by specifying a starting RABN.

Using this function, the DBA may, based on knowledge of the projected size of a file, allocate
extents of a specific size, rather than having Adabas perform the assignment. This may avoid
having Adabas allocate an extent which is too small or too large (see ADALOD utility).
MAXNI/MAXUI and MAXDS values in effect for the accessed file are not checked.

DEALLOCATE Function

The DEALLOCATE function (Adabas Online System or ADADBS utility) may be used to
deallocate an extent allocated for any of the following file components:

� Data Storage

� address converter

Database Space Management
4

121

� normal index

� upper index

It is also possible to specify where deallocation is to begin by specifying a starting RABN. The
deallocated space is returned to the free space table (FST).

DELETE Function

The DELETE function (Adabas Online System or ADADBS utility) causes an existing file to
be deleted from the database. All space which was assigned to the file is returned to the free
space table and is available for reuse. DELETE can delete complete expanded files only.

RECOVER Function

The RECOVER function (Adabas Online System or ADADBS utility) may be used to recover
space which was allocated during an execution of the ADAINV or ADALOD utility which
terminated abnormally. The recovered space is returned to the free space table and is available
for reuse.

REFRESH Function

The REFRESH function (Adabas Online System or ADADBS utility) results in the setting of
a file status to 0 records loaded and 1 extent allocated to each file component. Any additional
extents other than the first extent are returned to the free space table.

RELEASE and UNCOUPLE Functions

The RELEASE and UNCOUPLE functions (Adabas Online System or ADADBS utility) results
in the deletion of an inverted list or physical coupling lists. The space used for the list can be
recovered only by using ADAORD. When releasing a descriptor for an expanded file, each
component file must be released individually. ADADBS displays a message whenever a
descriptor of an expanded file is being released.

Adabas DBA Reference Manual
4

122

Space Allocation with the ADAINV Utility
COUPLE/INVERT Functions

The COUPLE and INVERT functions (Adabas Online System or ADAINV utility) may result
in the assignment of additional blocks for the NISIZE file component (but not DSSIZE or
MAXISN). This occurs if the available space becomes full during processing of the input data.

In such a case, if there are any index blocks freed during deletion by the nucleus, these blocks
are reused. Then, if available, a range of blocks in the free space table whose size is within the
range M1 through M2 will be taken.

M1 and M2 are computed as follows:

M2 = M1 + M1/8
M1 = MAX (A2, NIB/4 + KZ)

—where

KZ zappable value (default = 10)

NIB number of NI blocks in use

—and

A2 = MIN (A1, NIB * 2)
A1 = IUN * NIB/IUS

—where

IUN number of unused ISNs

IUS number of used ISNs

When inverting a descriptor for an expanded file, each component file must be individually
inverted. ADAINV displays a message whenever a descriptor of an expanded file is being
inverted.

Database Space Management
4

123

Space Allocation with the ADALOD Utility
LOAD Function

The LOAD function of the ADALOD utility is used to load a file into a database.

DSSIZE Parameter

The number of blocks or cylinders specified with the DSSIZE parameter is allocated and
assigned to the first DS extent at the beginning of ADALOD execution.

The DSRABN and/or DSDEV parameters may be used to force the allocation to a specific
RABN and/or device.

If during processing of the input data, this first allocated extent becomes full, a search is made
for a range of free blocks in the free space table whose size is within the range M1 through M2.

M1 and M2 are computed as follows:

M2 = M1 + M1/8
M1 = MAX (A2, DSB/4 + KZ)

—where

KZ zappable value (default = 10)

DSB number of DS blocks in use

—and

A2 = MIN (A1, DSB * 2)
A1 = IUN * DSB/IUS

—where

IUN number of unused ISNs

IUS number of used ISNs

If enough space is found in the free space table and that space follows immediately an already
allocated extent, this space is added to the end of the extent. In this case no new extent is
allocated.

If a new extent is needed, the free space table is scanned and the number of blocks needed to
satisfy the size of M1 through M2 is taken for the new extent. Up to five extents are possible.
If space is not available, ADALOD ends with an error message.

Adabas DBA Reference Manual
4

124

MAXISN Parameter

The MAXISN value is converted into a number of blocks and rounded up to a full block
boundary. This range of blocks is allocated at the beginning of ADALOD execution and is
assigned to the first address converter extent for the file.

The ACRABN parameter may be used to force the allocation to begin at a specific location.

If during processing of the input data, this first allocated extent becomes full, ADALOD tries
to allocate another AC extent whose size is 25% of the sum of all currently existing AC extent
sizes.

� If an unused range of blocks is available in the free space table in the range of 25% through 28%
of the size currently in use, this range is immediately allocated as a new AC extent for the file;

� If only longer free ranges are available, a new AC extent of 25% is taken from the smallest free
range of blocks;

� If only smaller free ranges are available, the largest available is taken.

NISIZE/UISIZE Parameters

At the beginning of its execution, ADALOD allocates and assigns the blocks or cylinders
specified by the NISIZE and UISIZE parameters to the first NI and UI extents, respectively.

The NIRABN and UIRABN parameters can be used to force extent allocation to begin at a
specific RABN.

If you omit the NISIZE or UISIZE parameters, ADALOD does not initially allocate NI and UI
space. Instead, ADALOD waits until all incoming descriptor values have been written to the
Temp dataset, and then estimates NISIZE and UISIZE values as follows:

� If no input records were processed:

NISIZE = Number of descriptors +1
UISIZE = 2 blocks

� If input records were processed:

For each descriptor in the file, up to 16 temp dataset blocks are selected and read. The contents
of these blocks are sorted and estimated to the total amount of temp blocks used for this
descriptor.

Database Space Management
4

125

The chosen algorithm returns the NISIZE and UISIZE values for each descriptor, which
ADALOD adds together and then multiplies by the factor “K”, which is

K = (MAXISN – MINISN + 1) / number of records loaded

If, during operation, ADALOD determines that the resulting value is not enough, ADALOD
allocates subsequent extents during its run. The sizes of these extents are computed in the same
way as for additional DSSIZE extents, as described above.

UPDATE Function

The UPDATE function of the ADALOD utility performs a mass add/delete of records to/from
an existing file, reorganizes and (if necessary) expands the Associator and/or Data Storage
space.

The ADALOD UPDATE functions allocates additional AC space if the MAXISN parameter
specifies a new, higher maximum ISN value—even if the restructuring of the AC, NI and UI
performed by UPDATE results in more unused current space. ADALOD UPDATE adds Data
Storage space if the current Data Storage space cannot hold the new records.

MAXISN Parameter

If a MAXISN value is specified for the UPDATE operation that is greater than the current value
for the file, the difference between the old and the new MAXISN setting is computed. The
number of AC blocks to satisfy this amount is then allocated from the free space table as an
additional extent. The ACRABN parameter may be used to force the allocation to begin at a
specific location.

If during processing of the input data the current AC and/or Data Storage extent becomes full,
ADALOD tries to allocate another AC and/or Data Storage extent whose size is 25% of the sum
of all currently existing AC and/or Data Storage extent sizes.

� If an unused range of blocks is available in the free space table in the range of 25% through 28%
of the size currently in use, this range is immediately allocated as a new AC extent for the file;

� If only longer free ranges are available a new AC extent of 25% is taken from the smallest free
range of blocks;

� If only smaller free ranges are available, the largest available is taken.

Adabas DBA Reference Manual
4

126

Space Allocation by the ADAORD Utility

ADAORD reorders the respective Adabas Associator component (AC, NI/UI, DSST) and Data
Storage to reclaim unusable space for reuse. Although ADAORD functions affect only the
selected component files of an Adabas expanded file, there is no change to the logical
consistency of an expanded file; therefore, ADAORD does not have to be performed on each
component file of an expanded file, unless desired.

Function Accessed Table Types

REORFASSO AC, NI, UI

REORASSO AC, NI, UI, DSST

REORFDATA, REORDATA DS

REORFILE, REORDB AC, NI, UI, DS

For each accessed file and for each accessed table type (depending on the function), the
following action is taken:

� All used space is returned to the free space table.

� All tables with a specific location (ACRABN, DSRABN, NIRABN, UIRABN) are allocated
and assigned as a first extent. The sizes used are either supplied (MAXISN, DSSIZE, NISIZE,
UISIZE) or taken from the original file.

� All tables without a specific location are allocated and assigned as a first extent.

If one of the extents become full, the same action is taken as described for the ADALOD
(UPDATE) utility (see the previous section).

Space Allocation by ADASAV (RESTORE FILES Function)

If a file to be restored is already present in the database (OVERWRITE parameter must be
specified) the space used by all these files is returned to the free space table. If a component file
of an expanded file is specified, then all related component files must also be specified.

� RESTORE FILE=...

For each file to be restored, the original RABNs must be available. ADASAV tries to allocate
the required extents at their original position with their original size. If one of these allocations
fails, ADASAV will terminate with ERROR–060.

Database Space Management
4

127

� RESTORE FMOVE=...

For each file to be restored, at least the amount of original space used will be allocated. The
allocation of the first extent for each file table can be forced to a specific location by using one
of the optional parameters ACRABN, DSRABN, NIRABN, UIRABN. The sizes of these tables
may be increased using MAXISN, DSSIZE, NISIZE, UISIZE.

If space is available, multiple input extents may be compressed in a new single extent. If there
is not enough contiguous free space available, ADASAV will split the tables over several new
extents (up to five for each table). If such space is not available, ADASAV will terminate with
ERROR-060.

Using the Database Status Report to Control Space Use

Database space utilization information can be obtained directly from the database status report
produced by executing the ADAREP utility or using Adabas Online System.

In addition to a file allocation map and a block allocation map, this report lists the number of
blocks

� used (and unused) for the Associator physical extent (or extents);

� used (and unused) for the Data Storage physical extent (or extents);

� allocated for the Work physical extent;

� used (and unused) for each file for the address converter, normal index, upper index, and
Data Storage logical extent (or extents).

See the ADAREP chapter in the Adabas Utilities Manual for a detailed explanation of the
information provided on this report.

The DBA should frequently review this report to identify potential space utilization problems.

The next section contains guidelines on problems which may be detected using the status report,
and recommendations as to what action should be taken to prevent and/or resolve each problem.

Adabas DBA Reference Manual
4

128

Potential Space Use Problems and Recommended Actions

This section provides a summary of the problems most often encountered concerning database
space utilization, and the recommended corrective action to be taken to prevent and/or correct
problems.

Full Physical Extents

1. The Associator physical extent is nearly or completely full.

� The physical extent may be increased (see ADADBS utility, INCREASE function);

� A new physical extent may be added (see ADADBS utility, ADD function);

� The Associator may be reordered using the ADAORD utility. This will be of benefit only if a
large amount of Associator space fragmentation exists;

� Unused file extents can be release using the ADADBS DEALLOCATE function;

� Any Adabas files no longer required may be deleted (see the ADADBS utility; DELETE
function);

� Any file coupling lists no longer needed may be deleted (see the ADADBS utility, UNCOUPLE
function);

2. The Data Storage physical extent is nearly or completely full.

� The physical extent may be extended (see the ADADBS utility, INCREASE function);

� A new physical extent may be added (see the ADADBS utility, ADD function); this is
recommended only when the new extent is on a new device type.

� Data Storage may be reordered (see the ADAORD utility, REORDATA function). This will be
of benefit only if a large amount of Data Storage space fragmentation exists, or the Data Storage
padding factor is decreased;

� A given file may be reordered (see the ADAORD utility, REORFILE function);

� Any Adabas files no longer required may be deleted (see the ADADBS utility, DELETE
function).

Database Space Management
4

129

Maximum Physical Extents Reached

1. The maximum of five Associator physical extents has been reached.

� The last extent can be increased using the ADADBS INCREASE function;

� The Associator can be reordered by executing the ADAORD REORASSO function;

� All files can be unloaded using the ADAORD RESTRUCTURE function and then reloaded
into a larger database using ADAORD STORE.

2. The maximum of five Data Storage physical extents has been reached.

� The last extent can be increased using the ADADBS INCREASE function;

� Data Storage can be reordered (see the ADAORD utility, REORDATA function). This will
result in the elimination of Data Storage space fragmentation;

� All files can be unloaded using the ADAULD utility and then reloaded into a larger database.

Maximum Logical Extents Reached

1. The maximum logical extents for the address converter, normal index, or upper index for a file
has been reached.

� The REORFILE or REORFASSO function of the ADAORD utility can be executed to reorder
all Associator entries for the file.

� ISN reusage can be invoked using the ADADBS utility.

� The file can be unloaded, deleted, and reloaded.

2. The maximum logical extents limit for either Data Storage or the Data Storage space table for
a file has been reached.

� The file (and all other files) can be reordered using the REORFDATA or REORFILE function
of the ADAORD utility. This condenses multiple Data Storage extents into fewer extents.

� The file can be unloaded, deleted, and reloaded.

130

5

131

DATABASE MONITORING AND TUNING

Monitoring Resource Use

The DBA is responsible for monitoring the database environment on a continuing basis to ensure
that an efficient level of service is provided while maintaining database integrity.

The DBA should implement a set of procedures designed to foresee degradation before the event
and to adjust the operation or design of the database in an orderly and controlled way. This set
of procedures includes

� identifying potential sources of degradation;

� establishing tools for monitoring database performance; and

� controlling the implementation of adjustments.

Reporting on Resource Use

The DBA should report regularly on database use and performance to both data processing and
user management. The reports should be factual, but should also include recommendations for
tuning the database environment. It should be remembered that tuning, while benefiting the
organization as a whole, may adversely affect the service received by one or more users. Any
decision on tuning should, therefore, be made by all affected users.

Monitoring Database Controls

The DBA should establish appropriate controls and monitor them to ensure the integrity of the
database.

Computer-generated control totals can be checked and cross-footed between computer
processing runs or generated reports. Batch responses (or inquiries) may include such
information as the exact run time, search parameters, time of last update of data, and the primary
parameter controls. This increases the confidence level and helps to ensure the integrity of the
database.

Adabas DBA Reference Manual
5

132

The problem of control totals takes different forms at different installations. Although hard and
fast rules are not possible in this area, some general guidelines can be given.

The DBA needs to ensure that proper consideration is given to the following areas in the design
of each application system that will use the database:

� What controls can be checked on every batch update run? For example, record counts, additions,
deletions, updates.

� What controls require a full file pass to check them? For example, value field hash totals.

� What input transactions, Adabas logs, etc., should be retained in order to be able to recover when
control totals are found to be wrong at the end of a given period?

� Are “localized” control totals (that is, by branch, product group) of any use in identifying the
areas affected by a file control total error?

Performance Management, Statistics, and Tuning

The following table illustrates some of the monitoring statistics that may be used and what
adjustments to (or tuning of) the database environment may result.

Changes in... May require tuning of...

database
structure

access
method

used

hardware
or software

configuration
processing

priority

disk
storage

allocation

terminal and line traffic � � � �

response times (application
performance) � � � � �

access totals by user and
descriptor � � �

database size � � � �

database growth rate � � � �

When any alteration is made to a production database, care must be taken to ensure a continued
high level of reliability and integrity. Whatever the change, the DBA must make sure that the
decision is the right one and that it is properly and accurately implemented. He should retain
absolute control over the tuning process and ensure that it follows the formal acceptance
procedures.

Database Monitoring and Tuning
5

133

The DBA must be careful not to overreact to changes in the items listed in the table. A sudden
change in line traffic, response times, etc., may only be temporary. It is important to determine
whether the change represents a permanent trend or a temporary disturbance to the normal way
of operating.

The table can be used to determine what tuning may be necessary when a new project will cause
a significant change in terminal and line traffic, response times, etc. The DBA can then act in
advance to minimize these effects before the new application system is implemented.

Adabas Session Statistics

The statistics printed at the end of each Adabas session may be used to monitor Adabas
performance. Specifically, the session statistics comprise

� input/output (I/O) statistics;

� command statistics; and

� pool/queue usage statistics.

Input/Output Statistics

The following I/O statistics are provided:

I/O Counts (Including Initialization)

Reads Writes
ASSO 50 21

DATA 2388 2184

WORK 9 1385

PLOG 9 1603

CLOG 0 0

TOTAL: 2456 5193

LOG. READS 33899

BUFFER EFF. 13.9

Adabas DBA Reference Manual
5

134

The input/output (I/O) counts represent the number of physical I/Os executed during the session
to the Associator (ASSO), Data Storage (DATA), Work (WORK), the data protection log
(PLOG), and the command log (CLOG).

Also provided are the number of logical reads issued for the buffer pool (LOG. READS) and
the buffer efficiency (BUFFER EFF.) which is the number of logical reads divided by the
number of Associator and Data Storage reads. The higher the value for buffer efficiency, the
more efficient is buffer pool usage. If the value is less than 10, the DBA may wish to increase
the size of the Adabas buffer pool (see the Adabas Operations Manual, the ADARUN LBP
parameter description).

Distribution of ASSO/DATA I/Os by VOL-SER Number (Excluding Initialization)

VOL-SER HIGH RABN COUNT
ADA003 (ASSO: 894) 38

ADA003 (ASSO: 2544) 6

ADA003 (DATA: 894) 0

ADA003 (DATA: 1344) 4572

TOTAL: 4616

The distribution of I/Os for the Associator and Data Storage per physical volume is also
provided. The data provided are the highest RABN accessed/updated (HIGH RABN) and the
number of I/Os (COUNT). The DBA can use this data to determine if any adjustments are
necessary to the buffer pool parameters and/or to the physical allocation of the database.

Command Statistics

In the following example, command statistics are provided for a session in which Adabas
executed 12,687 calls in five threads.

Distribution of Commands by Source

The following table shows the source of commands for the session: either from the same
environment (local) or from a remote environment across a network:

Source Number
REMOTE LOGICAL 0

REMOTE PHYSICAL 0

Database Monitoring and Tuning
5

135

Source Number
LOCAL LOGICAL 0

LOCAL PHYSICAL 12,686

Distribution of Commands by Thread

The following table shows the thread activity for the session:

Thread Number
1 7,328

2 2,728

3 1,240

4 814

5 541

TOTAL: 12,651

If the thread with the highest number has an activity count greater than zero it can be assumed
that the Adabas nucleus would be able to process a larger number of commands if the number
of threads were increased. Increasing the number of threads would prevent commands from
waiting in the command queue for selection.

Distribution of Commands by File

The following table shows the distribution of commands by file:

File Number
0 4,247

1 8,404

TOTAL: 12,651

Commands that are not file-related (e.g. BT, ET) are counted against file 0.

Adabas DBA Reference Manual
5

136

Distribution of Commands by Type

The following table shows the distribution of commands by command type:

Command Type Number
A1/4 4,198

ET 4,191

L1/4 4,242

OP 56

TOTAL: 12,687

The command type UC indicates “privileged call” issued by Adabas utilities.

Note:
The command type REST indicates commands such as C1, C5, RI and HI.

Additional Session Statistics

THERE WERE 56 USERS PARTICIPATING

MOST CALLS (57) INITIATED BY USER user ID
MOST I/O–S (14) INITIATED BY USER user ID
MOST THR.–TIME (04:16:32) WAS USED BY USER user ID

28 Formats had to be translated

0 Formats had to be overwritten

0 Autorestarts were done

20 Throw-backs due to ISN problem

16 Throw-backs due to space problem

186 Buffer-flushes were done

Formats Translated/Overwritten

Adabas read and update commands require a Format Buffer that specifies the fields to be read
or updated. This Format Buffer is interpreted and converted into an internal Format Buffer by
Adabas, which enters each resulting internal Format Buffer into the internal Format Buffer pool.
Each internal Format Buffer is identified by a combination of user and command IDs.

Database Monitoring and Tuning
5

137

For each new read/update command, Adabas looks to see if a user ID/command ID entry is
already present in the format buffer pool. If not, Adabas translates the command’s new format
buffer and enters it into the pool. Once the format buffer pool becomes full, an existing entry
must be overwritten to accommodate a new entry.

The format translation process is CPU intensive. Therefore, the DBA should ensure that an
excessive number of format overwrites are not occurring by doing the following:

1. Ensure that user programs are making correct use of command IDs; that is, using non-blank
command IDs when appropriate and releasing command IDs when no longer needed. For
further information on command ID use, refer to the Adabas Command Reference Manual.

2. Consider increasing the size of the internal format buffer pool (with the ADARUN LFP
parameter, described in the Adabas Operations Manual).

The Adabas nucleus produces statistics on format translations and format overwrites at the
conclusion of each session. The Adabas operator command DSTAT may also be used to obtain
this information.

Autorestarts

The number of Autorestarts performed during the session.

Command Throwbacks

The number of times a command could not be executed because the Adabas nucleus was waiting
for

� an available ISN; or

� Adabas work pool space.

In such an event, the command is “thrown back” into the command queue for processing at a
later point in time.

If either of these numbers is greater than zero:

1. adjust the ratio between the ADARUN LWP (work pool size) and LS (sort work area)
parameters;

2. increase the size of the Adabas work pool (ADARUN LWP parameter);

Adabas DBA Reference Manual
5

138

3. evaluate ADARUN TT (transaction time limit) parameter;

4. check application program hold logic;

5. increase the Adabas hold queue size (ADARUN NH parameter); and

6. use superdescriptors to reduce complexity of search commands.

The ADARUN parameters are described in the Adabas Operations Manual.

Buffer Flushes

The number of buffer flushes performed during the session.

The Adabas buffer pool represents a virtual database that is shared by all active users. It contains
the most frequently used Associator and Data Storage blocks, and its purpose is to minimize
physical I/O activity.

The size of the buffer pool is determined by the ADARUN LBP parameter. LBP should be set
as large as possible with the restriction that setting too large a value may cause excessive paging
by the operating system.

Buffer and Queue Statistics

Session statistics include the maximum buffer and queue use during the session. These statistics
are presented for all buffers and queues (except the buffer pool) for which “high-water marks”
can be computed. The following table shows high-water marks for a sample session:

Pool Area ADARUN Parameter High-Water Mark %
AB NAB = 10 12032 29

CQ NC = 20 3648 95

DUQ LDEUQP = 5000 500 10

FI LFP= 12000 1760 14

HQ NH = 100 552 23

SC LCP= 10000 0 0

TBI LI = 10000 0 0

TBS LQ = 10000 0 0

UQ NU = 20 4880 86

Database Monitoring and Tuning
5

139

Pool Area %High-Water MarkADARUN Parameter
UQF NU = 20

WORK LWP = 14000 70464 50

XID XID = 0 0 0

Note:
The UQF is the user queue extension that holds the file list. The size of its pool is computed using
the UQ pool size.

The high-water marks are provided together with the applicable ADARUN parameter setting
that was in effect for the session.

The DBA should monitor each high-water mark and, if necessary, make adjustments to the
appropriate ADARUN parameters.

Command Logging

Adabas command logging may be used to generate information on all the commands issued by
users to Adabas. Some of the information provided is

� user identification;

� time of day;

� the command used;

� the file accessed;

� the record accessed;

� the Adabas response code received;

� the time required for the command to perform.

Command logging is controlled by the ADARUN parameter “LOGGING”.

140

6

141

ADABAS ONLINE SYSTEM DEMO VERSION

A demo version of Adabas Online System (AOS) and access to the online services for selected
other Adabas products and facilities is included with Adabas as shown in the following diagram:

AOS
demo version

Adabas Delta Save
Facility

Adabas Statistics
Facility

Adabas Fastpath

AOS Security

Adabas
Transaction

Manager
Adabas Vista

Adabas Dynamic
Caching

Adabas
SAF Security

Figure 6-1: AOS Demo Version

This chapter describes the operation and use of the AOS demo version. The use of the online
services for the other Adabas products and facilities is described in the manuals for those
products and facilities. AOS Security is described in the Adabas Security Manual.

Adabas DBA Reference Manual
6

142

Overview

The AOS demo version includes the following functions that are comparable to Adabas operator
commands and utilities and are used for Adabas database analysis and control:

DBA Tasks

MAINTENANCE REPORTING SESSION COMMUNICATION

–

–

–

–

– nucleus parameters

– performance

maintain file definitions display command queues

display

display systemlist checkpoints

– terminate session

UTILITY FUNCTIONS OPERATOR COMMANDS

display database report

AOS Demo Version
(Real-time Monitoring)

Database

Figure 6-2: Overview of the AOS Demo Version

See the Adabas Installation Manual for information about installing the demo version of AOS.

The selectable unit AOS includes services that correspond to additional utility functions and
operator commands. See the Adabas Online System Manual for information.

 AOS Demo Version
6

143

What You Can Do with the AOS Demo Version

The DBA can use the AOS demo version to monitor aspects of an Adabas database while an
Adabas session is active. Using menu options, the DBA can view resource and hold queue status;
display space allocation; display file and database parameters; create new FDTs; and stop a
current Adabas session.

For analyzing performance and monitoring database operation, the AOS demo version displays
the system from the viewpoint of either a user or a particular system resource. For example, you
can

� check hold queue status;

� view nucleus parameters;

� monitor command and file usage and system performance information;

� list file layout and extent status; and

� list file distribution of the database by VOLSER.

For controlling the overall Adabas session, the AOS demo version can be used to

� create new FDTs; and

� terminate an Adabas nucleus session (ADAEND).

Adabas DBA Reference Manual
6

144

Main Menu Functions

To enter the AOS demo version, log on to the Natural application SYSAOS and enter DBMENU
at the NEXT prompt, if one appears.

Note:
If the full version AOS is installed on your system, enter MENU instead. See the Adabas Online
System Manual for more information.

14:40:37 ***** A D A B A S BASIC SERVICES ***** 2002–05–29
 – Main Menu – PMAIN02

 Code Basic Services Code Other Services
 –––– –––––––––––––––––––––– –––– –––––––––––––––––––––
 A Session monitoring 1 Adabas Cache Facility
 C Checkpoint maintenance 2 Delta Save Facility

 F File maintenance * Trigger Maintenance
 M Database maintenance 4 AOS Security
 O Session opercoms 5 Transaction Manager
 R Database report 6 Adabas Statistics
 * Space calculation 7 Vista
 ? Help 8 Fastpath

 . Exit 9 SAF Security
 –––– –––––––––––––––––––––– –––– –––––––––––––––––––––

 Code _
 Database ... 1955 (WIS1955)

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit

The Main Menu displays the functions available with Adabas Online System. AOS functions
that are not not available with the demo version are marked with an asterisk (*) on the screen.

From the Main Menu, you can access available “basic services” functions or one of the “other
services” installed on your system. Other services installed at your site are highlighted.

The Main Menu shown on page 144 indicates the main DBA tasks in the demo version:

 AOS Demo Version
6

145

Code Function Page

A Session monitoring allows you to display nucleus parameters, session and
thread status information, ISNs in the hold queue, and maintenance levels
for nucleus modules

146

C Checkpoint maintenance allows you to list checkpoint information 155

F File maintenance allows you to define a new FDT for a new file 158

M Database maintenance is not active for the demo version 161

O Session opercoms allows you to add or delete PIN modules used by the
extended error recovery facilities; display currently loaded PIN routines and
activate or deactivate them, display locked files, and terminate a session
normally (ADAEND)

162

R Database report allows you to view general database layout information,
tables of database files, and detailed information for any file

170

Subsequent sections in this chapter describe the major functions of the AOS demo version and
menu/screen structures in the order that they appear on the Main Menu.

Specifying the AOS Demo Version Database

The database on which the AOS demo version is installed becomes the default database for
demo version functions. However, you can specify the database of any active Adabas nucleus
session. Subsequent AOS demo version functions refer to that database until you specify another
database or exit the AOS demo version.

Using Program Function (PF) Keys

Available PF keys and their functions are listed at the bottom of each screen. The following
program function (PF) keys appear on all screens within the AOS demo version; other
navigation keys appear on some screens:

PF1 Help

PF3 Exit to previous screen

PF12 Return to the Main Menu

Adabas DBA Reference Manual
6

146

Selecting a Menu Option

To select a function or option, enter the option code in the Code field.

Selecting a Main Menu function displays a menu of choices for that function.

Getting Help

From any AOS demo version menu, you can use PF1 to display a brief comment about the current
menu. See the section Program Functions Keys on page 145.

AOS Demo Version Messages

The AOS demo version issues a message confirming each completed function. If an error
occurs, a message appears containing a reference number and describing the error.

Before analyzing an error, try reviewing the help information (PF1) for the last step you
performed to see if any requirements were overlooked; then retry the operation.

Response code 22 is returned if the Adabas session is terminated and restarted while the AOS
demo version is active. In this case, the application should be stopped and restarted.

Session Monitoring

Adabas session monitoring functions display major Adabas resources. These functions are most
useful when analyzing system performance or seeking the cause of performance problems.

 AOS Demo Version
6

147

14:38:19 ***** A D A B A S BASIC SERVICES ***** 2002–05–29
 – Session Monitoring – PAC0002

 Code Service Code Service
 –––– –––––––––––––––––––––––––– –––– ––––––––––––––––––––––––––––
 * Display cluster members * Refresh nucleus statistics
 * Maintain user profiles * Current session statistics

 D Display parameters * Maintain TCP/IP URL
 * Modify parameters U Display session utilization
 Q Display queues Z Display maintenance levels
 ? Help
 . Exit
 –––– –––––––––––––––––––––––––– –––– ––––––––––––––––––––––––––––

 Code _
 Database ID .. 1955 (WIS1955) NucID .. 1022

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit Menu

You can use the Session Monitoring environment to monitor the Adabas nuclei in a
multiprocessing (Parallel Services or Cluster Services) environment. When the DBID of a
Parallel or Cluster Services database is entered on the Session Monitoring menu, subsequent
screens include a field to specify the ID of the nucleus in the cluster that you want to monitor.

Each of the functions on the Session Monitoring menu is discussed in the following sections:

Code Function Page

D Display Adabas nucleus (ADARUN) parameters 148

Q Display the contents of the hold queue 150

U Display session status and thread usage 151

Z Display Adabas nucleus modules: maintenance levels and ZAPs applied 154

Adabas DBA Reference Manual
6

148

Display ADARUN Parameters

You can view Adabas nucleus (ADARUN) parameters.

To view the parameters, select option D from the Session Monitoring menu.

Three screens are used for displaying parameters:

 16:33:03 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – Display Parameters – PACP002

 Modify parameters below, as required:
 –––––––––––––– Pools ––––––––––––––– ––––––––––– Queues ––––––––––––––––––
 Sort Area (LS) .. 19968 Command Queue (NC) .. 100
 Int. User Buffer (LU) .. 65535 Hold Queue (NH) .. 9000
 Buffer Pool (LBP) .. 127936 User Queue (NU) .. 700

 Format Pool (LFP) .. 12000 –––––––––– Time Windows –––––––––––––
 ISN List Table (LI) .. 10000 Transaction Time (TT) .. 300
 Seq. Cmd. Table (LQ) .. 2500 Max Transaction Time (MXTT) .. 3600
 Work Pool (LWP) .. 500000 Nonactivity ACC–User (TNAA) .. 300
 Attached Buffer (NAB) .. 35 Nonactivity ET–User (TNAE) .. 300
 Security Pool (LCP) .. 10000 Nonactivity EXU–User (TNAX) .. 300

 UQ–DE Pool (LDEUQP) .. 5000 Max Nonactivity Time(MXTNA) .. 3600
 Flush I/O Pool (LFIOP) .. 125000 Time Limit Sx–Cmds (TLSCMD) .. 286
 Err. Recovery(SMGTBUFF) .. 0 Max Time for Sx–Cmds(MXTSX) .. 3600
 Command Time (CT) .. 9000
 SYNS60 Interval (INTNAS) .. 3600

 Page 1 of 3
 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit + Menu

 AOS Demo Version
6

149

 16:33:03 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – Display Parameters – PACP002

 Modify parameters below, as required:
 ––––––––– Miscellaneous ––––––––––– –––––––– User Specific Limits –––––––––
 ReadOnly session (READONLY) .. NO Hold Queue Limit (NISNHQ) .. 2200
 UTI only session (UTIONLY) .. NO CIDs per User (NQCID) .. 75
 OPEN required (OPENRQ) .. NO ISNs / TBI Element (NSISN) .. 51

 Ignore DIB Entry (IGNDIB) .. NO –––––––––––– Buffer Pool ––––––––––––––
 Local nucleus (LOCAL) .. NO Bufferflush Dur. (TFLUSH) .. 1
 Number of Threads (NT) .. 4 Parallel LFIOP I/O (FMXIO) .. 60
 Non DE Search (NONDES) .. YES Async. by Vol–Ser (ASYTVS) .. YES
 Log AOS/DBS Update (AOSLOG) .. NO
 Batch Support (BATCH) .. NO

 Data Protection Area (LP) .. 500
 Ignore Work Part 4 (IGNTPC) .. NO
 WORK–Part–4 Area (LTPC) .. 0
 WORK–Part–2 Area (LWKP2) .. 0
 Page 2 of 3

 Modify parameters below, as required:
 –––– Command Logging –––– –––––––––– Protection Logging –––––––––––
 Command Logging .. NO PLOG required (PLOGRQ) .. NO
 LOGCB NO DUAL PLOG Size (DUALPLS) .. 0
 LOGFB NO DUAL PLOG Device (DUALPLD) .. 0
 LOGRB NO –––––––––––– Other Services –––––––––––––

 LOGSB NO Triggers and Procedures (SPT) .. NO
 LOGVB NO Delta Save Facility (DSF) .. NO
 LOGIB NO Cache Facility (CACHE) .. NO
 LOGIO NO Transaction Manager (ATM) .. NO
 LOGUX NO TCP/IP Support (TCPIP) .. NO
 LOGSIZE 8904 Ext. Error Recovery (SMGT) .. NO

 DUAL CLOG Size ... 0 2 Phase Commit Support (TPC) .. NO
 DUAL CLOG Dev. ... 0 Review Support (REVIEW) .. NO

 Page 3 of 3
 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit – Menu

Adabas DBA Reference Manual
6

150

Display Hold Queue

Selecting Queue displays (option Q) from the Session Monitoring menu displays the following
menu:

 09:00:20 ***** A D A B A S BASIC SERVICES ***** 1997–01–29
 – Queue Displays – PACQ002

 Code Service
 –––– –––––––––––––––––––––––––––
 * Display User Queue Elements
 * Display Command Queue
 H Display Hold Queue

 ? Help
 . Exit
 –––– ––––––––––––––––––––––––––––
 Code _
 Max No. Elements ... 100
 Last Activity 0 (elapsed time in seconds)

 Selection Criteria
 ET–ID (User–ID) .. ________ User Type ... ___
 Job Name ________
 Terminal ID ________
 Database ID 105 (RD–105)
 Command ==>

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Clear UID Menu

Option H displays a list of the ISNs currently in hold status.

If the queue is currently empty, an appropriate message appears.

 AOS Demo Version
6

151

Display System Status and Thread Usage

Selecting Resource utilization (option U) from the Session Monitoring menu invokes the
Resource Utilization menu:

 11:44:10 ***** A D A B A S BASIC SERVICES ***** 1997–01–30
 – Resource Utilization – PACU002

 Code Service
 –––– –––––––––––––––––––––––––––––––
 * Command usage
 * File usage
 * High water marks (pools/queues)

 * Workpool (LWP) usage
 * PLOG status
 S System status
 T Thread usage
 * WORK status
 ? Help

 . Exit
 –––––––– –––––––––––––––––––––––––––––––
 Code _
 File Number .. 0
 Database ID .. 105 (RD–MPM105)

 Command ==>
 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Menu

Each option allows you to refresh (PF4) the displayed values, a convenience for long-term
monitoring of Adabas system functions.

Adabas DBA Reference Manual
6

152

System Status

System status (option S) displays I/O counts for the ASSO, DATA, WORK, and PLOG datasets;
remote and local call distribution; and other current session status information.

 16:44:13 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – System Status – PACUS02

 Physical
 Reads Writes Call Distribution
 ––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––
 ASSO 132 29 Remote Logical 0
 DATA 3 9 Remote Physical 0

 WORK 4 29 Local Logical 145
 PLOG 0 Local Physical 0
 Logical Reads 194 Logical Reads (binary) 000000C2
 Buffer Efficiency 1.4 No. of HQEs active 0
 No. of UQEs in User Queue .. 2
 Format Translations .. 0 No. of CQEs waiting in CQ .. 0

 Format Overwrites 0
 Total intern. Autorestarts . 0
 Throw Backs for ISN .. 0 No. of PLOG switches 0
 Throw Backs for Space. 0 No. of Bufferflushes 8

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Refresh Menu

 AOS Demo Version
6

153

Thread Usage

Thread usage (option T) displays a table of all defined Adabas threads, the status of each, the
command type currently in process in each active thread, and the number of commands
processed by each thread in the current session.

 11:47:18 ***** A D A B A S BASIC SERVICES ***** 1997–01–30
 DBID 105 – Thread Status – PACUT02

 Nr. I Thread Status I Command Type I Nr. CMDs I
 –––
 1 I Active I Simple Cmd. I 18992 I
 2 I Not active I I 109 I
 3 I Not active I I 0 I

 4 I Not active I I 0 I
 5 I Not active I I 0 I
 I I I I

Adabas DBA Reference Manual
6

154

Display Maintenance Levels

Selecting Display maintenance levels (option Z) from the Session Monitoring menu displays
information about the Adabas nucleus modules:

 13:43:09 ***** A D A B A S BASIC SERVICES ***** 1999–06–09
 DBID 105 – Display Maintenance Levels – DPACZ02

 Select Module Name: ________
 –––
 ADARUN RUNMVS Date 1998–10–27, Version 7.1. 0, Zap Base AO10000
 RUNIND Date 1998–10–27, Version 7.1. 0, Zap Base AI10000
 ADATSP Date 1998–10–30, SM Level 00, Zap Level 0000

 Zaps 0034 0040 0043 0083 0084 0099
 ADATCP Date 1998–10–30, SM Level 00, Zap Level 0000
 Zaps 0136
 ADAMSG Date 1998–10–30, SM Level 00, Zap Level 0000
 ADAIOR Date 1998–10–29, SM Level 00, Zap Level 0000
 ADAIOS Date 1998–10–29, SM Level 00, Zap Level 0000

 Zaps 0001 0003 0004 0005 0007
 ADANC0 Date 1998–11–01, SM Level 00, Zap Level 0000
 Zaps 0036

 Command ===>
 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––

 Help Exit –– – + Menu

Maintenance levels for each module are displayed. Any ZAPs that are applied to the module
are also listed.

The list of modules can be limited by entering a specific module name in the Select Module
Name field at the top of the screen. A starting value may also be used. For example, specifying
ADANC3 displays information for the ADANC3 module only. Specifying ADANC* lists all
modules with names that begin with ADANC.

 AOS Demo Version
6

155

List Checkpoints

Selecting Checkpoint maintenance (option C) from the Main Menu invokes the Checkpoint
Maintenance menu:

14:41:59 ***** A D A B A S BASIC SERVICES ***** 2002–05–29
 – Checkpoint Maintenance – PCP0002

 Code Service
 –––– –––––––––––––––––––––––
 C List checkpoints

 * Delete checkpoints
 ? Help
 . Exit
 –––– –––––––––––––––––––––––

 Code _

 Date(YYYY–MM–DD) . 0000–00–00
 Ext. CP–list N
 Checkpoint Name .. ALL
 Database ID 1955 (WIS1955)

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit Menu

Option C lists checkpoints currently in the checkpoint file.

The result can be either a basic or an extended list, depending on the setting of the “External
CP-list” field, which can be used to override the CPEXLIST operating control parameter.

You can start the list of checkpoints on a particular day by entering the date in the Date field
in exactly the format shown.

You can specify the database for which the checkpoint list is to be written.

Adabas DBA Reference Manual
6

156

You can restrict the list to a particular type of checkpoint by changing the ALL designation in
the Checkpoint Type field to one of the following:

SYNC nucleus initialization

SYNF user open EXF

SYNP utility without NUC

SYNS ADARES

SYNV volume ID change

SYNX utility

SYN1 ADASAV DB begin

SYN2 ADASAV DB begin

SYN4 ADASAV file begin

SYN5 ADASAV file begin

For more information about checkpoint types, see the chapter ADAREP in the Adabas Utilities
Manual.

The following screen displays a normal checkpoint list:

 15:12:22 ***** A D A B A S Basic Services ***** 1997–01–30
 DBID 105 – List Checkpoints – PCPC002

 CP CP Date Time PLOG Block Vol/Ser User Job Name
 Name Type Number Number Number Type
 –––– –––– –––––––––– –––––––– –––––– –––––––––– –––––––– –––– ––––––––
 SYNC 01 1996–04–01 00:29:41 MPM105
 SYNS 60 1996–04–01 02:00:37 ADABAS

 SYNP 06 1996–04–01 02:43:55 PMS105SS
 SYNV 0A 1996–04–01 02:59:51 PMS105SS
 SYNV 0A 1996–04–01 02:59:51 PMS105SS
 SYNV 0A 1996–04–01 02:59:51 PMS105SS
 SYNV 0A 1996–04–01 02:59:51 PMS105SS
 SYNC 01 1996–04–01 03:12:30 MPM105

 SYNS 60 1996–04–01 04:34:43 ADABAS

 AOS Demo Version
6

157

This screen illustrates an extended checkpoint list providing additional information about each
checkpoint:

 12:58:49 ***** A D A B A S Basic Services ***** 1997–01–31
 DBID 105 – List Checkpoints – PCPC002

 CP CP Date Time PLOG Block Vol/Ser User Job Name
 Name Type Number Number Number Type
 –––– –––– –––––––––– –––––––– –––––– –––––––––– –––––––– –––– ––––––––
 SYNC 01 1996–04–01 00:29:41 MPM235
 SESSION OPEN IGNDIB = N , FORCE = N

 SYNS 60 1996–04–01 02:00:37 ADABAS
 STATISTIC RECORD
 SYNP 06 1996–04–01 02:43:55 PMS235SS
 SAVE DB
 SYNV 0A 1996–04–01 02:59:51 PMS235SS
 SAVE DB VOL–SER = 502461 SESSION = 933

 SYNV 0A 1996–04–01 02:59:51 PMS235SS
 SAVE DB VOL–SER = SESSION = 933
 SYNV 0A 1996–04–01 02:59:51 PMS235SS
 SAVE DB VOL–SER = 502215 SESSION = 933

Adabas DBA Reference Manual
6

158

File Maintenance

Selecting option F from the Main Menu invokes the File Maintenance menu:

14:42:25 ***** A D A B A S BASIC SERVICES ***** 2002–05–29
 – File Maintenance – PFL0002

 Code Service
 –––– ––––––––––––––––––––––––––––––
 C Define/modify FDT
 * Release descriptor
 * Delete existing file
 * Define new file

 * Modify file parameters
 * Reorder file online
 * Refresh file to empty status
 * Allocate/deallocate file space
 * Maintain expanded files
 ? Help

 . Exit
 –––– ––––––––––––––––––––––––––––––
 Code _
 File No 0 Descriptor Name .. __
 Database ID .. 1955 (WIS1955)

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit Menu

 AOS Demo Version
6

159

From the File Maintenance menu, option C displays the FDT/SDT Definition / Modification
menu:

15:34:30 ***** A D A B A S BASIC SERVICES ***** 1998–07–30
 – FDT/SDT Definition / Modification – PFLC002

 Code Service
 –––– –––––––––––––––––––
 * Add new field(s)
 * Change field length
 D Define new FDT

 * Online invert
 * Define/add SDT
 ? Help
 . Exit
 –––– –––––––––––––––––––

 Code _
 File No. 50
 Field Name ... __
 Database ID .. 105 (RD–MPM105)

 Command ==>

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Def. File Exit Menu

Adabas DBA Reference Manual
6

160

From the FDT/SDT Definition / Modification menu, option D displays the Define FDT screen,
which can be used to define a new FDT for a new file:

 15:13:34 ***** A D A B A S BASIC SERVICES ***** 1997–02–12
 DBID 105 – Define FDT – PFLCD02

 File Number ... 200 New FDT ... Y
 Enter Field Description(s) :

 I Level I Name I Length I Format I Options I
 I–––

 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I

 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Menu

FDTs for existing files cannot be redefined with this option.

This function corresponds to the Adabas utility function ADACMP COMPRESS.

 AOS Demo Version
6

161

Database Maintenance

Selecting option M from the Main Menu invokes the Database Maintenance menu:

14:42:42 ***** A D A B A S BASIC SERVICES ***** 2002–05–29
 – Database Maintenance – PDM0002

 Code Service
 –––– ––––––––––––––––––––––––––––
 * Add new dataset to ASSO/DATA
 * Increase/decrease ASSO/DATA
 * List/reset DIB block entries

 * Recover unused space
 * Uncouple two ADABAS files
 ? Help
 . Exit
 –––– ––––––––––––––––––––––––––––

 Code _
 File No. 0
 Coupled File .. 0
 Database ID ... 1955 (WIS1955)

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit Menu

None of the Database Maintenance functions are active for the demo version.

Adabas DBA Reference Manual
6

162

System Operator Command Functions

Selecting Session opercoms (option O) from the Main Menu displays the following menu:

14:43:03 ***** A D A B A S BASIC SERVICES ***** 2002–05–29
 – Session Opercoms – PACI002

 Code Service Code Service
 –––– –––––––––––––––––––––––––––––– –––– ––––––––––––––––––––––––––––––
 * Allocate/Deallocate CLOG/PLOG S Stop user(s)
 E Extended Error Recovery T Termination Commands
 * Force Dual CLOG or PLOG switch * Manage Online Utilities

 L Lock or unlock files * User Table Maintenance
 * Reset ONLINE–DUMP–Status
 ? Help
 . Exit
 –––– –––––––––––––––––––––––––––––– –––– ––––––––––––––––––––––––––––––
 Code _

 Userid(ETID) ... ________
 CLOG/PLOG Ind .. _ Global.. _
 Database ID 1955 (WIS1955) NucID .. 1022

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit Menu

The following functions are available to the AOS demo version:

Code Function Page

E Add or delete PIN modules used by the extended error recovery facilities;
display, activate or deactivate current PIN routines

163

L Display locked files 166

S Stop a specific user, all users of a specific file or job, or all inactive users 168

T Terminate a session normally (ADAEND) 169

 AOS Demo Version
6

163

Extended Error Recovery

Selecting option E (extended error recovery) from the Session Opercoms menu displays the
Extended Error Recovery menu:

14:44:35 ***** A D A B A S BASIC SERVICES ***** 1999–05–12
 – Extended Error Recovery – DPACIE2

 Code Service
 –––– ––––––––––––––––––––––––––––––––––
 * Display message buffer
 * Display/modify environment
 * Display/modify Exit routines

 M Add/Delete PIN modules
 P Display/modify PIN routines
 * Refresh threshold and alert exits
 * SNAP a nucleus dump
 ? Help
 . Exit

 –––––– ––––––––––––––––––––––––––––––––––

 Code _
 Start Address .. End Address ...
 Database ID 823 (RD–CK–823)

 Command ==>
 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Menu

From this menu you can

� add or delete PIN modules;

� display, activate, or deactivate specific PIN routines.

Adabas DBA Reference Manual
6

164

Add / Delete PIN Modules

Selecting option M (add/delete PIN modules) from the Extended Error Recovery menu displays
a list of currently available PIN modules:

13:42:45 ***** A D A B A S BASIC SERVICES ***** 1999–06–18
 DBID 823 – Add/Delete PIN Modules – PACIEM2

 Mark entries with ’A’ to Add or ’D’ to Delete:

 M Module Description Message
 – –––––––– –––––––––––––––––––––––––––––– –––––––
 _ ADAMXY Standard Nucleus PIN Routines

 PINAAF SAF Security
 PINAFP Adabas Fastpath
 PINATM Adabas Transaction Manager
 PINAVI Adabas Vista
 _ PINRSP Adabas Response Code Handler
 _ PINUES Universal Encoding Support

To load a PIN module into memory, enter ‘A’ in the M column next to the module name.

This command is successful only if the exit module exists in a library accessible to the Adabas
nucleus.

To remove a PIN module from memory, enter a ‘D’ in the M column next to the module name.

When deleting a PIN module from memory, all related PIN routines are also removed.

These functions are the same as the extended error recovery operator commands

SMGT,{ADDPIN | DELPIN}=module-name

 AOS Demo Version
6

165

Display/Modify PIN Routines

Selecting option P (display/modify PIN routines) from the Extended Error Recovery menu
displays a list of PINs currently loaded in memory:

 13:08:49 ***** A D A B A S BASIC SERVICES ***** 1999–06–16
 DBID 105 – List/Modify PIN Routines – PACIEP2

 Mark entries with ’A’ Activate, or ’D’ Deactivate: Total Pins: 012

 M Condition Error Location Status Uses Module Message
 – ––––––––– –––––––––––––––––––––––––––– ––––––– –––– –––––––– –––––––––––
 _ 000C1000 All Locations Active 0 ADAMXY

 _ 000C2000 All Locations Active 0 ADAMXY
 _ 000C3000 All Locations Not Act 0 ADAMXY
 _ 000C4000 All Locations Active 0 ADAMXY
 _ 000C5000 All Locations Active 0 ADAMXY
 _ 000C6000 All Locations Active 0 ADAMXY
 _ 000C7000 All Locations Not Act 0 ADAMXY

 _ 000C8000 All Locations Active 0 ADAMXY
 _ 000C9000 All Locations Active 0 ADAMXY
 _ 000CB000 All Locations Active 0 ADAMXY
 _ 000CF000 All Locations Active 0 ADAMXY
 _ 00047000 All Locations Active 0 ADAMXY

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Refr –– – + Menu

For all PIN routines on the list, the screen indicatess the conditions that cause them to be
executed, the current status, the number of times they have been used, and the module in which
they are located.

To change the status of the PINs from this screen, enter in the M column next to the PIN number

A to activate a PIN

D to deactivate a PIN

After changes have been made, use PF4 to refresh the screen.

Adabas DBA Reference Manual
6

166

These functions are the same as the extended error recovery operator commands

SMGT,DISPLAY=PINS
SMGT,{ACTPIN | DEACTPIN}=pin-number

Display Locked Files

Selecting option L from the Session Opercoms menu displays the following:

16:02:10 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 – Lock / Unlock Files – PACIL02

 Code Service
 –––– ––––––––––––––––––––––––––––––––––
 D Display locked files
 * Lock file for all users
 * Advance lock file

 * Lock file except for UTI/EXF users
 * Unlock file from general lock
 * Release an advance lock
 * Unlock file from UTI/EXF lock
 ? Help
 . Exit

 –––– –––––––––––––––––––––––––––––––––––
 Code _
 File Number .. 30
 UTI/EXF Ind .. U
 Database ID .. 105 (RD–105)

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit Menu

 AOS Demo Version
6

167

Option D from this menu displays the Display Locked Files screen:

 10:57:45 ***** A D A B A S BASIC SERVICES ***** 1998–07–31
 DBID 105 – Display Locked Files – PACID02

 M Fnr. Lock Status M Fnr. Lock Status
 – ––––– ––––––––––––––––––––––––– – ––––– –––––––––––––––––––––––––
 1 Locked for ALL users
 35 Locked except for UTI
 50 Locked except for EXU/EXF

 55 Locked for ALL users
 60 Locked for ALL users

PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit –– – + Menu

Adabas DBA Reference Manual
6

168

Stop User(s)

Selecting option S (stop users) from the Session Opercoms menu displays the Stop Users menu:

18:26:02 ***** A D A B A S BASIC SERVICES ***** 1999–07–29
 – Stop Users – PACIS02

 Code Service
 –––– –––––––––––––––––––––––
 * Stop users using file
 * Stop inactive users
 * Stop users by jobname

 * Stop a selected user
 ? Help
 . Exit
 –––– –––––––––––––––––––––––
 Code _
 File Number _____

 Last Activity ________ (elapsed time in seconds)
 Job Name ________
 Purge UQE(s) N
 Selected Userid ..
 Database ID 105 (RD–105)

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Disp UQ Exit Clear UID Menu

None of the Stop Users functions are active for the demo version.

 AOS Demo Version
6

169

Terminate a Session Normally (ADAEND)

Selecting option T from the Session Opercoms menu invokes the Session Termination menu
from which you can terminate a session normally (ADAEND).

 11:43:00 ***** A D A B A S BASIC SERVICES ***** 1997–01–30
 – Session Termination – PACT002

 Code Service
 –––– –––––––––––––––––––––––––––––––––––
 A Normal session termination (ADAEND)
 * Cancel session immediately (CANCEL)
 * Stop session (HALT)

 ? Help
 . Exit
 –––––––– –––––––––––––––––––––––––––––––––––
 Code _
 Database ID .. 105 (RD–MPM105)
 Current nr. of users in User Queue ... 9

 Nr. of users with open transactions .. 0

 Command ==>
 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Menu

You are prompted to confirm your termination request before the action is taken.

Adabas DBA Reference Manual
6

170

Database Report

Database Report functions, which correspond to selected functions of the Adabas ADAREP
utility, provide both general and specific information in either table or report format.

14:43:26 ***** A D A B A S BASIC SERVICES ***** 2002–05–29
 – Database Report – PDR0002

 Code Service
 –––– –––––––––––––––––––––––––––––––––––––
 * List files with crit. no. of extents
 * Display field description table (FDT)
 F Display file(s)

 G General database layout
 * List VOLSER distribution of database
 * Display ASSO/DATA block (RABN)
 * Display unused storage
 ? Help
 . Exit

 –––– –––––––––––––––––––––––––––––––––––––
 Code _
 File No 0_____ Password ..
 Database ID .. 1955 (WIS1955)
 VOLSER ______

Command ==>
PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
Help Exit Menu

Options available to the AOS demo version allow you to view database-level general
information and tables of database files, and file-specific information for any file:

Code Function Page

F Display file(s), either a list of all files in the specified database or detailed
information about a specific file.

171

G Display the general layout of the specified database. 176

 AOS Demo Version
6

171

Display Files

If no particular file is specified, option F lists all files in the specified database. If a file is
specified, option F provides detailed layout information for the file. Physical device and file
layout information is available only for a specific file.

Display a List of Files in the Specified Database

When no file number or “0” (zero) is specified in the File No field on the Database Report menu,
a list of the files in the specified database is displayed:

 09:24:38 ***** A D A B A S BASIC SERVICES ***** 1997–02–20
 DBID 105 – Display Files – PDRF002

 Fnr File Name Loaded Top–ISN Max–ISN Ext. Pad % Ind. %Used
 NUAD A D ACISEXU A D
 –––– –––––––––––––––– –––––––––– –––––––––– –––––––––– –––– –– –– ––––––– –––––
 1 EMPLOYEES 1993–06–15 1110 5511 1111 3 3 NNISNNN 68 88
 2 MISCELLANEOUS 1993–06–15 1779 5511 1111 3 3 NNISNNN 32 88
 4 AUTOMOBILES 1993–06–15 1000 5511 1111 3 3 NNISNNN 34 36
 5 PERSONNEL 1993–06–15 1000 5511 1111 3 3 NNISNNN 38 52
 6 FINANCE 1993–06–15 1000 5511 1111 3 3 NNISNNN 52 52
 7 GDMUSIC 1992–05–01 3292 16535 1111 3 3 NNNSNNN 81 95
 8 SAMPC–REV311DATA 1992–05–01 44679 100593 1111 3 3 NNNSNNN 79 99
 9 RD–NAT217–FUSER 1993–09–23 163272 175005 1111 3 3 NNISNNN 76 99
 10 RD–PRD314–FDIC 1992–05–01 60016 63387 1111 3 3 NNNSNNN 73 90
 11 REV320–DBFILE 1992–05–01 4442 11023 1111 10 10 NNNSNNN 42 82
 12 REV340–DBFILE 1993–02–15 52008 63387 1111 10 10 NNNSNNN 6 13
 13 SASRM–ZAP–TEST 1992–05–01 11 1377 1111 3 3 NNNSNNN 93 4
 14 SASRM–ZAPSYS 1992–05–01 5 1377 1111 3 3 NNNSNNN 28 4
 16 SAGDT–PRD–FDIC 1992–05–01 25649 30315 1111 3 3 NNISNNN 57 85

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Repos Exit –– – + Menu

The PF2 (Reposition) key displays a window in which you can enter a new starting value for the
file list. When you enter a file number, the Display Files list begins with that file.

Adabas DBA Reference Manual
6

172

The Display Files screen provides the following information for each file:

� file number and file name;

� date the file was loaded into the database;

� highest ISN currently in use in the file and the highest ISN allowed in the file;

� number of logical extents currently assigned: by Associator (Normal index; Upper index;
Address converter) and Data Storage. A maximum of five logical extents may be allocated to
a file.

� block padding factor percentage defined for the Associator and for Data Storage;

� indicators as follows:

A ADAM option: A = ADAM ISN- or descriptor-selected file; N = non-ADAM file.

C coupled (C) or non-coupled (N) file.

I ISNs are reusable (I) or not (N).

S Data Storage blocks are reusable (S) or not (N).

E data files are ciphered/encrypted (E) or not (N).

X files are expanded (X) or normal (N).

U USERISN option: U = option is in effect for the file; N = option is not in effect.

� percentage of allocated space currently used by the file in the Associator and in Data Storage.

 AOS Demo Version
6

173

Display Information for a Specific File

When a valid system file number is specified on the Database Report menu, the following
Display File Layout information is displayed for that file:

 18:27:37 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – Display File Layout – PDRF012

 * File 75 * UES–FILE

 Records loaded 1107 Date loaded 1999–01–26 12:18:17
 Top ISN 1107
 Max ISN expected ... 1502 Max Compr Rec Lngth .. 4816

 Minimum ISN 1 Asso/Data Padding 3%/3%
 Size of ISN 3 Bytes Highest Index Level .. 3
 Number of Updates .. 0
 ISN Reusage NO USERISN NO
 Space Reusage YES MIXDSDEV NO
 ADAM File NO PGMREFRESH NO

 Ciphered File NO NOACEXTENSION NO
 Coupled Files NONE Universal Encoding ... YES
 Blk per DS Extent .. 0
 Blk per UI Extent .. 0
 Blk per NI Extent .. 0 Length of Owner ID ... 0

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Refresh Menu

The information for the file can be refreshed by pressing PF4.

You can display additional information about space allocations by pressing ENTER.

Adabas DBA Reference Manual
6

174

The Display File Layout screen displays the following information for the file:

� the file number and name;

� the number of records currently contained in the file;

� ISN information: the highest ISN currently used in the file; the highest ISN planned for the file
(see the ADALOD utility’s MAXISN parameter); the lowest ISN that can be assigned to a record
in the file (see the ADALOD utility’s MINISN parameter); whether 3- or 4-byte ISNs are used
for the file; and whether ISNs can be reused.

� the total number of updates since the file was last loaded;

� other file option settings: whether Data Storage space can be reused; whether the file was loaded
with the ADAM option, the cipher option, the USERISN option; whether the file is physically
coupled to another file; whether Data Storage extents can be on different device types; whether
the file can be refreshed using the E1 command; whether the file permits the MAXISN setting
to be increased.

� the number of blocks allowed per Data Storage, upper index, and normal index extent;

� the date and time the file was last loaded;

� the maximum compressed record length permitted for the file (see the ADALOD utility’s
MAXRECL parameter);

� the padding factor for the Associator and for Data Storage;

� the highest index level currently active for the file;

� the total number of blocks in the file that have been changed by updates since the file was last
loaded;

� the length of the owner ID for multiclient files.

� whether universal encoding support (UES) is being used.

 AOS Demo Version
6

175

Pressing ENTER from the initial Display File Layout screen displays the following space
allocation and usage information:

 18:33:41 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – Display File Layout – PDRF022

 File 75

 IDeviceIListI Space allocated I From To I Unused I
 I Type ITypeI Blocks / Cyls. I RABN RABN I Blocks / Cyls.I
 –––––I––––––I––––I–––––––––––––––––––I ––––––––––––––––––––I––––––––––––––––I

 I I I I I I
 ASSO I 3380 I AC I 3 0 I 724 – 726 I 0 0 I
 I 3380 I UI I 15 0 I 747 – 761 I 0 0 I
 I 3380 I NI I 20 0 I 727 – 746 I 0 0 I
 I 3380 I NI I 56 0 I 762 – 817 I 2 0 I
 I I I I I I

 DATA I 3380 I DS I 116 0 I 216 – 331 I 29 0 I

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Refresh Menu

Adabas DBA Reference Manual
6

176

Display General Database Layout

Option G displays general database information on the Display General DB-Layout screen:

 18:43:07 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – Display General DB–Layout – PDRG002

 Isolated
 Database Name RD–105
 Database Number 105
 Database Version 7.1
 Database Load Date 1998–10–21 14:40:47

 System Files 19 , 0 , 0 , 0 , 0 , 0 , 0 , 0
 Maximum Number of Files .. 100
 Number of Files Loaded ... 5
 Highest File Loaded 75
 Trigger File Number 14
 Size of RABN 4 Bytes

 Current Log Tape Number .. 5
 Delta Save Facility Inactive
 Recovery Aid Facility Inactive
 Universal Encoding Sup. .. Yes

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Menu

You can display additional information about UES codes, coupling, and space allocations by
pressing ENTER.

 AOS Demo Version
6

177

The Display General DB Layout screen displays the following information for the file:

� the name and number of the database;

� the version level of the Adabas database software;

� the date and time the database was loaded;

� the numbers of Adabas system files allocated to the database;

� the maximum number of files permitted for the database; the total number of files currently
loaded; and the highest file number currently in use;

� whether 3- or 4-byte RABNs are being used for the file;

� the number of the most recent data protection log tape for the database;

� whether the Adabas Delta Save Facility and/or the Adabas Recovery Aid (ADARAI) are active
or inactive for the database.

� whether universal encoding support (UES) is being used.

When universal encoding support (UES) is being used, pressing ENTER from the initial Display
File Layout screen lists the current code values:

 18:51:22 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – Display General DB–Layout – PDRG002

 Universal Encoding Support Enabled

 UES Encoding Keys:

 Alpha File Encoding 37

 Wide File Encoding 4095
 Alpha ASCII Encoding 437
 Wide User Encoding 4095

Adabas DBA Reference Manual
6

178

In any case, pressing ENTER from the initial Display File Layout screen displays the following
space allocation and usage information:

 18:52:01 ***** A D A B A S BASIC SERVICES ***** 1999–01–28
 DBID 105 – Display General DB–Layout – PDRG002

 IDeviceI Total Number of I Extents in Block I DD–Names I
 I Type I Blocks / Cyls. I From To I I
 ––––––I––––––I––––––––––––––––––––––I –––––––––––––––––––––––––I––––––––––I
 I I I I I
 ASSO I 3380 I 14231 50 I 1 14231 I DDASSOR1 I

 I I I I I
 DATA I 3380 I 6741 50 I 1 6741 I DDDATAR1 I
 I I I I I
 WORK I 3380 I 3592 30 I 1 3592 I DDWORKR1 I

 PF1––––– PF2–––––– PF3–––––– PF4–––––– PF6––––– PF7––––– PF8––––– PF12–––––
 Help Exit Menu

7

179

ERROR HANDLING AND MESSAGE BUFFERING

The error handling and message buffering facility helps implement 24X7 operations by
analyzing and recovering from certain types of errors automatically with little or no DBA
intervention. It also generates additional information so that the error can be diagnosed by the
user and by Software AG.

The ADARUN SMGT parameter is set to activate the facility; if message buffering is to be used,
the ADARUN MSGBUF parameter is used to size the buffer. The wrap-around message buffer
collects Adabas messages for later review by Adabas Online System in case online access to the
console or to DDPRINT messages becomes unavailable. The buffer aids problem analysis and
performance tuning.

The error handling functions of the facility are implemented as operands of the operator
command SMGT and can be invoked from the operator console or from Adabas Online System.
See the Adabas Operations Manual for detailed information.

The current implementation of the facility makes it possible for the nucleus to protect itself or
provide additional error recovery information for

� a parameter error 31 : autorestart error;

� a parameter error 73 : checkpoint file is full during initialization;

� non-response codes by capturing pertinent areas of storage to aid in the diagnosis; and

� program interruptions by providing additional dump areas.

Adabas DBA Reference Manual
7

180

Range of Operations

User Exit Failures

User exits and hyperexits that are essential to the operation of the Adabas nucleus can be marked
as critical (the default) or not using one of the operands of the SMGT operator command:

� If a user exit is defined as critical, is is not affected by the error handling and message buffering
facility: an abnormal termination in it causes the Adabas nucleus to terminate abnormally as
well.

� If the user exit is defined as “notcritical” and an abnormal termination occurs in it, the facility
maintains an active Adabas nucleus, optionally refrains from invoking that exit, takes a dump
of the nucleus at the point when the exit failed, and issues messages to the system log to inform
the DBA of the problem. The DBA can then examine the diagnostic information, use it to fix
the problem, then load and reactivate the corrected exit using operands of the SMGT operator
command.

Note:
If an Adabas exit attaches a subtask, the subtask is not protected by the error handling and
message buffering facility.

 Error Handling and Message Buffering
7

181

Recovery or Plug-In (PIN) Routines

The extensions (plug-in routines or “PINs”) are designed to analyze and, in some cases,
determine the cause of an ABEND while allowing the nucleus to continue processing. The PIN
determines whether it is safe to allow the nucleus to continue processing and prints appropriate
messages to notify the DBA when this is the case.

The PIN routine user exit ADASMXIT can be used to obtain additional information about
response codes and ABENDs. The user exit allows you to specify particular response codes or
response code/subcode combinations to be monitored. Once you have modified the user exit,
you can reload it and make your changes effective without bringing the database down.

Each plug-in (PIN) service routine handles a predefined condition when encountered, allowing
the Adabas nucleus to

� remain active when it otherwise would terminate abnormally; or

� print extended error diagnostics as an aid to error recovery.

Based on its execution, a PIN module can either transfer control to the Adabas nucleus so that
it can resume normal processing—usually with a response code—or it can return control to the
error handling and message buffering facility, allowing the Adabas nucleus to terminate
abnormally.

While the PIN is executing, most Adabas functionality is available to the PIN as the registers
at the time of the abnormal event are available. The PIN decides whether the nucleus should
remain active.

A PIN can also be used to format an intelligent dump in a number of circumstances to help debug
a particular response or ABEND code.

If the PIN determines that the nucleus is to remain active, the PIN sets a response code.

Adabas DBA Reference Manual
7

182

PIN Processing

In the event of an abnormal termination or nonzero response code, the error handling and
message buffering facility looks for a PIN routine first for the specific condition and location
detected, then for the specific condition, and finally for the location (any condition). If an
appropriate PIN is found, it is invoked; otherwise, the nucleus is terminated.

If a PIN routine is invoked and it

� handles the condition, processing then continues with no further intervention from the error
handling facility.

� cannot handle the condition, the PIN returns control to the error handling facility and the nucleus
is terminated.

For a response code error, the error handling facility first determines whether the response code
is one that it monitors.

� If the answer is no, the PIN returns control to the nucleus and the response code is returned to
the user normally.

� Otherwise, the appropriate PIN is invoked to print additional information about the response
code that to help resolve the problem. The PIN then returns control to the nucleus and the
response code is returned to the user normally.

Once the PIN has processed the response code, it returns control to the error handling facility
so that normal response code processing can continue.

Default PIN Module ADAMXY

The ADAMXY module is the default PIN module comprising the PIN routines that are
distributed with Adabas and automatically installed during initialization.

Note:
It is possible to disable the default PIN ADAMXY using the SMGT,DELPIN or
SMGT,DEACTPIN operator commands.

 Error Handling and Message Buffering
7

183

The following table describes the interrupts that are handled by the PIN routines in ADAMXY.
For each interrupt, extended dump formatting is provided to aid in error analysis:

Code Exception Type The processor . . .

01 Operation is about to execute an instruction that has an invalid operation
code.

02 Privileged
Operation

attempts to execute a supervisory instruction while in problem
state.

03 Execute interrupts a program deliberately to aid problem diagnosis.

04 Protection (also
Segment and
Page)

attempts to alter system or hardware storage; access fetch pro-
tected system or hardware storage; or access or modify storage
that is not allocated. Requires record/file-level locking with
user notification in job log. Note that code 16 (segment excep-
tion) and code 17 (page exception) are also presented to the
error handling facility as code 04.

05 Addressing encounters a reference to an invalid read address.

06 Specification attempts to either set or branch to an old address or an instruc-
tion that required a field to be aligned but did not have an
aligned argument.

07 Data encounters a corrupted data record, probably a field that should
be packed decimal is not.

08 Fixed Point a high-order carry occurs; or high-order significant bits are lost
in a fixed-point add, subtract, shift, or sign-control operation.

09,
11,
15

Divide encounters a zero divisor in a division instruction; probably a
corrupted record. Code 9 is for binary; code 11 is for packed
decimal; and code 15 is for floating point arithmetic.

The message

*****DEFAULT PIN OUTPUT************

—is generated whenever the default PIN ADAMXY is invoked. This is followed by all output
concerning the program interrupt processing of ADAMXY. The message

*****END OF DEFAULT PIN OUTPUT*****

—is generated whenever ADAMXY is completed.

Adabas DBA Reference Manual
7

184

Additional PIN Modules Provided

Some of the PIN modules discussed in this section are delivered with selectable units of Adabas.
They are established automatically when the relevant server component initializes at nucleus
startup:

PINAFP
PINATM
PINAVI
PINCOR
PINSAF

The remaining PIN modules discussed in this section are included with Adabas but are not part
of ADAMXY and are not automatically installed at Adabas initialization:

PINAUTOR
PINOPRSP
PINRSP
PINUES

PINRSP and PINUES are installed using the SMGT,ADDPIN=module-name command when
the nucleus is active. Because PINAUTOR and PINOPRSP are invoked during system
initialization when operator commands are not available, they are activated by renaming a
particular module in the Adabas load library:

� renaming NOOPRSP to PINOPRSP activates that PIN;

� renaming NOAUTOR to PINAUTOR activates that PIN.

See the Adabas Installation Manual for more information about installing PIN modules.

 Error Handling and Message Buffering
7

185

PINAFP

PINAFP is delivered with the selectable unit Adabas Fastpath. It is established automatically
when the Adabas Fastpath server component initializes at nucleus startup (ADARUN
FASTPATH=YES).

In the event of a program interrupt (see the table on page 183) in the Adabas Fastpath server
component, control is passed to PINAFP, which formats and prints the main memory areas used
by the component. These diagnostics are written to the DDPRINT dataset with the title

ADABAS FASTPATH – memory-area-name : SNAP BY PINAFP

PINAFP then returns control to the error handling and message buffering facility so that Adabas
can terminate abnormally.

If necessary, PINAFP can be activated and deactivated. However, after PINAFP is reactivated,
it will not be reestablished until the next nucleus session.

PINATM

PINATM is delivered with the selectable unit Adabas Transaction Manager (ATM). It is
established automatically when the ATM job initializes (ADARUN DTP=TM).

In the event of a program interrupt (see the table on page 183) in the ATM logic, control may
be passed to PINATM, which formats and prints the main memory areas used by ATM. These
diagnostics are written to the DDPRINT dataset with the title

ADABAS TRANSACTION MANAGER – memory-area-name : SNAP BY PINATM

PINATM then returns control to the error handling and message buffering facility so that Adabas
can terminate abnormally.

If necessary, PINATM can be activated and deactivated. However, after PINATM is reactivated,
it will not be reestablished until the next ATM session.

Adabas DBA Reference Manual
7

186

PINAUTOR

If NOAUTOR has been renamed to PINAUTOR in the Adabas load library and a parameter error
31 occurs during autorestart, PINAUTOR acquires control. PINAUTOR attempts to identify the
file that is in error and exclude it from autorestart if possible.

Before excluding a file from autorestart processing, PINAUTOR checks that

� the file is not the security or checkpoint file; and

� the response code is not 9, 65, 72, 88, 97, 99, 148, or 151 as these are not valid for the exclusion
process.

Additionally, PINAUTOR checks whether certain files or particular response codes for a
particular database are designated as ineligible for exclusion. For example, it may be senseless
to start a database without the particular file on which it depends. You can customize
ADASMXIT to include the files and the response codes that cannot be excluded. You can also
specify the maximum number of autorestarts with exclusions that can be attempted.

The AREXCLUDE procedure is automatically invoked to exclude a file. See the Adabas
Operations Manual, ADARUN parameter AREXCLUDE for more information. Note that
excluded files may become inconsistent and need to be restored from backup using ADASAV
RESTORE.

If a file is excluded from autorestart, an SM–PINAUTOR2 message is generated followed by
an ADAN50 message, both indicating the file number of the excluded file.

Whenever PINAUTOR is invoked, the message “PINAUTOR OUTPUT” is generated followed
by messages pertaining to the specific PINAUTOR situation as described in the Adabas
Messages and Codes manual. To indicate that PINAUTOR processing is completed, the
message “END PINAUTOR OUTPUT” is generated.

 Error Handling and Message Buffering
7

187

PINAVI

PINAVI is delivered with the selectable unit Adabas Vista. It is established automatically when
the Adabas Vista server component initializes at nucleus startup (ADARUN VISTA=YES).

In the event of a program interrupt (see the table on page 183) in the Adabas Vista server
component, control is passed to PINAVI, which formats and prints the main memory areas used
by the component. These diagnostics are written to the DDPRINT dataset with the title

ADABAS VISTA – memory-area-name : SNAP BY PINAVI

PINAVI then disables the program in which the interrupt occurred and returns control to Adabas
so that Adabas can continue. Disabling the program does not disrupt the Adabas service;
however, access to Adabas Vista files may be restricted. In this case, a nonzero response code
returned to the user identifies the restrictions.

If necessary, PINAVI can be activated and deactivated. However, after PINAVI is reactivated,
it will not be reestablished until the next nucleus session.

PINCOR

PINCOR is delivered with System Coordinator for Adabas Options. It is established
automatically when the System Coordinator server component (ADAPOP) initializes at nucleus
startup.

If a program interrupt occurs in the System Coordinator server component, control is passed to
PINCOR, which formats and prints the main memory areas used by the component.

These diagnostics are written to the DDPRINT dataset with the title

COMMON RUNTIME – memory-area-name : SNAP BY SMGT

PINCOR then returns control to the error handling and message buffering facility so that Adabas
can terminate abnormally.

Adabas DBA Reference Manual
7

188

PINOPRSP

Warning:
PINOPRSP makes it possible to initialize a database and operate it without writing checkpoints.
If database recovery procedures become necessary, the missing checkpoint information can
result in critical errors. To prevent this, you must reorder the checkpoint file immediately after
PINOPRSP is invoked and be able to account for all changes in the status of the database
between initialization and the reordering of the checkpoint file.

If NOOPRSP has been renamed to PINOPRSP in the Adabas load library and a parameter error
73 occurs during system initialization indicating a checkpoint overflow condition, PINOPRSP
is invoked.

The message “PINOPRSP OUTPUT” is generated indicating that PINOPRSP has been invoked.
PINOPRSP then generates a message warning the DBA that Adabas will activate even though
the checkpoint file is full:

response code INTERCEPTED BY PINOPRSP BECAUSE THE CHECKPOINT FILE IS
FULL. THE ADABAS NUCLEUS WILL ACTIVATE BUT THE CHECKPOINT FILE NEEDS TO
BE REORDERED AS SOON AS POSSIBLE.

The “response code” is either 75 or 77 in this case. No checkpoint is written but the nucleus
activates. Corrective action needs to be taken as soon as possible. The message “END
PINOPRSP OUTPUT” is then generated to indicate that PINOPRSP processing is completed.

PINRSP

The SMGT,ADDPIN=PINRSP operator command activates PINRSP, which provides extended
information to aid in diagnosing a response code.

Note:
Only response codes set by Adabas can be logged. A response code such as 22 (invalid command
code), which is set by the Adabas SVC before it reaches Adabas, is not logged.

If PINRSP is installed without modifying the Adabas PIN routine user exit ADASMXIT, all
response codes are logged. You can customize ADASMXIT to

� include specific response codes or response code/subcode combinations;

� indicate the number of times a particular response code can be monitored.

When a nonzero response code is encountered, PINRSP acquires control. The message
“PINRSP OUTPUT” is generated to indicate that PINRSP has control. Depending on the
response code encountered, different areas are logged.

 Error Handling and Message Buffering
7

189

With respect to areas logged, five categories of response codes are described:

1. Basic response code logging includes

� the active thread

� the FCB if possible

� the areas that have been GETMAINed and are currently in use

2. Index-related response codes such as 177

� basic response code logging

� the index structure from the thread

� active CQEs

� buffer pool headers

3. Response codes such as 40 where additional IUB areas may be pertinent

� basic response code logging

� IUBs

� active CQEs

4. Response codes such as 255 where additional attached buffer information may be necessary

� basic response code logging

� active CQEs

� attached buffer information

5. Response codes such as 72 where the user queue may be helpful

� basic response code logging

� active CQEs

� user queue

Example:

Rather than obtain a CLOG when you need additional information to diagnose a particular
response code, you can modify ADASMXIT to capture the response code, reassemble it, and
load it while the nucleus is up. The information is then logged the next time the response code
is encountered.

Adabas DBA Reference Manual
7

190

Once you have the information, you can modify ADASMXIT to remove the response code and
reload it so that information is no longer captured. Alternatively, you can set ADASMXIT
initially to log the information only ‘n’ number of times.

You can also use PINRSP in conjunction with ADASMXIT to suppress the ADAN77 message
that is generated for response codes 201, 202, or 203. This may be useful in situations where
a new application receives enough security errors to fill the SYSLOG. Although Software AG
does not recommend this action, you may temporarily modify ADASMXIT to suppress N77
messages and activate PINRSP with response codes 201, 202 and 203 indicated in ADASMXIT.

If message suppression is activated, the ADAN77 message “Message suppression in effect” is
generated and the PINRSP output providing format information related to the response code is
suppressed.

Once PINRSP has completed processing, the message “END PINRSP OUTPUT” is generated.

PINSAF

PINSAF is delivered with the selectable unit Adabas SAF Security (ADASAF). It is invoked
automatically when the ADASAF initializes at nucleus startup.

In the event of a program interrupt (see the table on page 183) in ADASAF, control is passed
to PINSAF, which formats and prints the main memory areas used by ADASAF. These
diagnostics are written to a dataset with the title

ADABAS SAF INTERFACE – control-block-name : SNAP BY SMGT

PINSAF then returns to the error handling facility so that Adabas can terminate abnormally.

Note:
For security reasons, PINSAF does not allow Adabas to continue after an ABEND in ADASAF.

Like other PIN routines, PINSAF can be activated and deactivated. However, after PINSAF is
reactivated, ADASAF itself must be restarted before PINSAF will function correctly. Refer to
the Adabas SAF Security Manual for more information.

 Error Handling and Message Buffering
7

191

PINUES

PINUES handles Adabas response codes in the context of the universal encoding support (UES)
system. PINUES captures input/output errors when trying to

� load an encoding object that does not exist; or

� convert invalid data.

Note:
When used with other PIN routines that handle the same error conditions, the PIN loaded last
is called to handle the error. For example:

F NUC227,SMGT,ADDPIN=PINRSP
F NUC227,SMGT,ADDPIN=PINUES

In this example, PINUES is loaded after PINRSP and therefore handles the error conditions it
can handle (response codes 17, 48, and 55). All other response codes are processed by PINRSP.

The message “PINUES OUTPUT” is generated to show that PINUES has acquired control. The
message “END PINUES OUTPUT” is generated when PINUES processing is completed.

Error Conditions Handled

� Response codes 17 and 48 may occur on an OP command if the ECS objects are not available
that are needed to determine the data conversion between user and Adabas file. In this case,
PINUES calls ADAMXF with the options IUB and UQE to obtain diagnostic output.

� Response code 55 may occur if ECS returns a response indicating that the conversion or moving
of text failed. In this case, the conversion parameters and buffers are snapped to obtain
diagnostic output.

Output Produced

Whenever PINUES writes diagnostic information, the following lines are printed on the
console:

******** P I N U E S OUTPUT ********’
ADANX1 dbid COMMAND cmd COMMAND ID hex–cid FNR file–number
 RESPONSE adabas–response–code SUBCODE adabas–subcode FLD field–name’
 TID hex–internal–user–id UID open–userid JOB job–name’
****** END P I N U E S OUTPUT ******’

Adabas DBA Reference Manual
7

192

Session Snapshots

18:17:37 ADAN19 00227 BUFFERFLUSH IS A S Y N C H R O N O U S
18:17:37 ADAN01 00227 A D A B A S V7.1.0 IS ACTIVE
18:17:37 ADAN01 00227 MODE = MULTI
18:17:37 ADAN01 00227 RUNNING WITHOUT RECOVERY–LOG
18:18:04 ADAI29 OPER CMD: SMGT,ADDPIN=PINUES
18:18:04 ADANTG 00227 PIN MODULE PINUES LOADED
18:18:04 ADANO2 00227 SMGT COMMAND PROCESSED
18:18:04 ADAN41 00227 1999–01–00 18:18:03 FUNCTION COMPLETED18:36:33 ADAN7A
00227 ECS ERROR –2 IN FUNCTION GETHANDL
18:37:21
18:37:21 ******** P I N U E S OUTPUT ********
18:37:21 ADANX1 00227 COMMAND OP COMMAND ID 00000000 FNR 00014
18:37:21 RESPONSE 017 SUBCODE 023
18:37:21 TID 00000013 UID BLAUTOPF JOB TXG.....
18:37:21 ADAH51 00227 DUMP FORMAT CALLED

The following output is produced by the ADAMXF module:

18:37:22 ADAH52 00227 DUMP FORMAT COMPLETED
18:37:22 ****** END P I N U E S OUTPUT ******
18:37:22
18:49:45 ADAN7A 00227 ECS ERROR 54 IN FUNCTION CVFTXTX
18:49:45
18:49:45 ******** P I N U E S OUTPUT ********
18:49:45 ADANX1 00227 COMMAND A1 COMMAND ID 00000000 FNR 00014
18:49:45 RESPONSE 055 SUBCODE 004
18:49:45 TID 00000017 UID ANDECHS. JOB TXG.....

 ECS CONVERSION PARAMETERS

 0C190BE0+0000 00106570 00000080 00000200 00000000 *................*
 0C190BF0+0010 00000004 0C10ACB4 00000004 0010A6E0 *..............w.*
 0C190C00+0020 00004000 0C190BEC 0000020C 00000000 *................*
 0C190C10+0030 001065AD 0C190BE4 00000000 00000000 *.......U........*

 ECSE FROM ENCODING 3026 TO ENCODING 3035

 00106570+0000 02000002 00000BD2 00000BDB 00000004 *.......K........*
 00106580+0010 00000000 001062C8 00106350 001064E8 *.......H.......Y*
 00106590+0020 0000BD20 0000BDB0 0000000C 00000000 *................*
 001065A0+0030 001065AD 0004362C 40000000 00FEFE00 *................*
 001065B0+0040 00000340 40000000 04404000 00000000 *................*
 001065C0+0050 00000000 00000000 00000000 00000000 *................*
 001065D0+0060 00000000 00000000 00000000 00000000 *................*
 001065E0+0070 00000000 00000000 00000000 00000000 *................*
 001065F0+0080 00000000 00000000 02000001 00000BDB *................*

 Error Handling and Message Buffering
7

193

 ECONV INPUT AREA

 0C10ACB4+0000 4141F1F2 40404040 40404040 40404040 *..12............*

 ECONV OUTPUT AREA

 0010A6E0+0000 414150C2 50C350C4 50C550C6 50C750C8 *...B.C.D.E.F.G.H*
 0010A6F0+0010 50C150C2 50C350C4 50C550C6 50C750C8 *.A.B.C.D.E.F.G.H*
 LINES 0010A700 TO 0010A7C0 SAME AS ABOVE
 0010A7D0+00F0 50C150C2 50C350C4 50C550C6 00000000 *.A.B.C.D.E.F....*
 0010A7E0+0100 00000000 00000000 00000000 00000000 *................*
 LINES 0010A7F0 TO 0010E6D0 SAME AS ABOVE

18:49:45 ****** END P I N U E S OUTPUT ******

PIN Routine User Exit

The PIN routine user exit (entry name ADASMXIT) can be used to

� supply parameters to the various PINs. If the exit is not installed, the parameters are set to the
default values.

� examine a condition when it is encountered before the PIN routine is invoked so that recovery
actions other than those provided by Adabas can be implemented.

The ADASMXIT load module must be located so that it can be loaded by the nucleus, either
in the load library concatenation or in a system call library such as the MVS system link list.
If you are running either ADASMP or Adaplex+ on OS/390 MVS, the ADASMXIT module
must be placed in an authorized load library.

The PIN routine user exit is written in Assembler.

User Exit Inputs

The exit is entered with the following registers set:

R13 Adabas PIN routine save area

R14 Return address / AMODE

R15 Entry point address

Adabas DBA Reference Manual
7

194

R0 Function code:

1 – nucleus initialization

2 – ABEND

4 – response code

5 – nucleus termination

R1 Parameter list

+0 address of two user words

+4 address of condition description block (CDB) for functions 2, 4

User Exit Outputs

There are no outputs. Return codes are ignored and all registers other than 15 must be returned
unchanged.

Condition Description Block

For each program check, abnormal termination, or response code error, a control block called
the condition description block (CDB) is generated that describes the event that occurred, where
it occurred, and what the registers and machine state were when it occurred. The CDB is passed
to the error handling and message buffering facility for use in determining whether a PIN routine
is to be called or whether an Adabas user exit is to be terminated. A PIN routine uses the CDB
to obtain information about the occurrence of the condition.

Modifying and Reloading the Exit

The PIN routine user exit may be modified, reassembled, and reloaded with the nucleus active.
To load a newly reassembled exit, issue the console operator command

SMGT,XD=SXnn to deactivate the PIN routine user exit
SMGT,XLOAD=SXnn to load the modified version of the exit
SMGT,XA=SXnn to activate the exit

See the Adabas Online System Manual for another way to accomplish this task.

 Error Handling and Message Buffering
7

195

Using the Exit with PINAUTOR

If PINAUTOR is enabled

� without the PIN routine user exit, the maximum number of files that can be excluded from
autorestart is 10 (the default) and all files except the checkpoint and security (system) files are
eligible for exclusion. All response codes are eligible for exclusion except those that Adabas
disallows as a general rule.

� with the PIN routine user exit, you can modify its AUTOPARM to change the maximum number
of files that can be excluded from autorestart and prevent specific files and/or response codes
from ever being excluded.

AUTOPARM Example

AUTOPARM DS 0D
MAXARPIN DC F’6’ Maximum of 6 files can be excluded from autorestart
BADRSPS DC XL1’48’ Response code 72 cannot be excluded from autorestart

DC XL29’00’ 28 more entries are possible
NOTFILE DC XL2’0041’ File number 65 cannot be excluded from autorestart

DC XL48’00’ 23 more entries are possible

Using the Exit with PINRSP

If PINRSP is enabled

� without the PIN routine user exit, all response codes are monitored with no specific subcode
checking. Each response code is monitored a maximum of ten times. The ADAN77 message
is not suppressed.

� with the PIN routine user exit, you can modify the response code to indicate the specific response
codes and subcodes that are to be monitored and the maximum number of times each response
code is to be monitored. You can set ‘N77MSG’ to YES in conjunction with response code
201/202/203 monitoring to suppress message ADAN77.

Adabas DBA Reference Manual
7

196

Response Table Entry Example

Note:
There is one entry per response code up to 255.

XL5’000A000000’
.
.... subcodes (up to 3; specified in hexadecimal)
.
.... maximum number of times to invoke PINRSP for response code (default=10)
.
.... 00 don’t log, 01 log

Example:

The ninth entry in the table corresponds to response code 9.

The entry X’0105020311’ indicates that response code 9, subcodes 2, 3, and 16 are logged.
Response code 9 is logged a maximum of 5 times.

8

197

UNIVERSAL ENCODING SUPPORT (UES)

Note:
UES support requires that you use a version 7 or above Adabas SVC or router.

In most cases, an Asian text character cannot be encoded using a single byte. For example,
Japanese with more than 10,000 characters in its set is encoded using two or more bytes per
character. Because of the encoding required, these are called double-byte character sets (DBCS)
or multiple-byte character sets (MBCS) as opposed to the single-byte character sets (SBCS)
characteristic of most Western languages.

Previous versions of Adabas have stored DBCS-encoded data in alphanumeric fields. Problems
with this solution include the following:

� the default ‘blank’ of alphanumeric fields may be different from the blank required for double-
or multiple-byte character fields;

� field truncations caused by length overwrites can result in changed or invalid characters because
the string is cut off at a byte boundary rather than at a character boundary.

� client/server applications are difficult to implement when client and server use different
encodings for their double- or multiple-byte character sets.

Although version 7 of Adabas continues to support the storage of DBCS-encoded data in
alphanumeric fields, it introduces a wide-character (W) field format to store data with a well
defined encoding and character set.

Character encoding and data conversion take place within Adabas using Unicode as the default
encoding for both storage (file encoding) and user presentation (user encoding).

Adabas DBA Reference Manual
8

198

Wide-Character Encodings

In Figure 8-1, the Japanese kana (first two) and kanji (second two) characters are encoded in
mainframe modal (mixed) and non-modal (pure)

� DBCS for use on EBCDIC-based machines

� JIS for use on ASCII-based machines

—and in Unicode, a fixed 2-byte encoding that is more universal than the other encodings and
is used as the default encoding in Adabas.

“kana [and] kanji”

<SO> , f , o | X 2 <SI>

0E 4486 4496 4F58 48F2 0F IBM–DBCS mixed
4486 4496 4F58 48F2 IBM–DBCS only

82A9 82C8 8ABF 8E9A Shift JIS (MS CP932)
<ESC> $ B $ + $ J 4 A ; z <ESC> (J

1B 24 42 242B 244A 3441 3B7A 1B 28 4A JIS

304B 306A 6F22 5B57 Unicode

Figure 8-1: Wide-Character Encoding Example

Modal encodings shift back and forth between single- and double-byte character encodings.
Mixed DBCS strings always start and end in single-byte mode.

Double-byte character only field lengths must be an even number of bytes.

For EBCDIC encodings, the padding or blank character is X’40’ or X’4040’. On Hitachi
machines, the wide space is X’A1A1’ and the single byte space is X’40’. Adabas allows a single
byte space to appear in double-byte mode without a mode switch.

 Universal Encoding Support (UES)
8

199

Wide-Character Data Support

Adabas supports wide-character data with

� extended alphanumeric format fields; and

� wide-character format fields.

For an existing database or file, the encoding is assigned to alpha or wide fields using the
ADADBS utility without an unload/reload. The field-level option NV (pass a field unconverted
to/from a caller) is available.

Extended Alphanumeric Fields

Adabas extends alphanumeric fields to support wide-character data by defining encoding keys
on both the database and file levels: the file level encoding takes precedence over the database
encoding. The encoding specifies the format in which the data is to be stored. It is also used as
the default format in which data is exchanged with a local user.

The encoding must be compatible with EBCDIC; that is, the space character must be X’40’. For
internal processing reasons, only one of the following encoding “families” is supported for a
given file:

� EBCDIC (single-byte character set)

� mixed host-DBCS

� host-DBCS with DBCS-only option

Advantages and Disadvantages

The advantages of using extended alphanumeric fields include

� immediate support of existing databases that contain DBCS data;

� applications such as Natural continue running without changes; and

� no logic changes in the Adabas nucleus for calls from the same encoding/architecture since
alphanumeric fields do not define an internal coding.

The disadvantage is that DBCS is not a “universal” encoding and unlike Unicode, it does not
support all characters used in the world’s languages.

Adabas DBA Reference Manual
8

200

Limitations

For an application, all alphanumeric fields have the same encoding. It is not possible to use
different encodings for different fields in the same session.

Conversion Considerations

When converting from pure single-byte character encodings, the field length of variable fields
may change requiring a shift of the converted record.

Wide-Character Fields

Adabas defines a wide-character (W) format for fields. W format fields are similar to
alphanumeric (A) format fields in that encoding keys are defined on both the database and file
levels: the file encoding takes precedence over the database encoding. It differs from A field
encoding in that

� if no encoding is specified, the default Unicode encoding is used.

� the “internal” encoding specifies the format in which the data is stored.

� the “user” encoding specifies the default format for data presented to the user.

A descriptor is stored (and sorted) with internal encoding.

Advantages and Disadvantages

The advantages of using wide-character (W) fields include the following:

� round-trip problems are avoided because the character set of the local encoding can be a superset
of all character sets of user and special encodings;

� space is saved because internal encodings allow the use of UTF–8 when supported by ECS; and

� native Unicode (the user encoding), the standard Java text encoding, can be directly stored and
retrieved.

The disadvantages are that

� Natural and other products do not immediately support the new format; and

� support for W format fields currently has the limitations listed in the next section, some of which
may be resolved in future releases of Adabas.

 Universal Encoding Support (UES)
8

201

Limitations

� For an application, all wide-character (W) fields have the same encoding. It is not possible to
use different encodings for different fields in the same session.

� A W field cannot be the source for a phonetic descriptor or hyperdescriptor.

� Format conversions are not possible from numbers (U, P, B, F, G) to W format.

� A W field cannot be part of a coupled field, physical or soft.

� A W field cannot be part of a format selection criterion (conditional format). This limitation is
due primarily to the single-byte character encoding of the criteria input (format buffer, search
buffer, and utility).

� A W field cannot be part of a security-by-value criterion.

� A W field cannot be used with an edit mask.

� Format buffer literals are handled as nonconvertible single-byte character strings.

Special DBCS Format Conversion Rules

To ensure a smooth transition from existing applications that use mixed-DBCS and DBCS-only
data, special format conversion rules have been defined:

1. A modal DBCS encoding comprising the superset of single-byte and double-byte characters is
treated as “mixed-DBCS” encoding for alphanumeric fields and as “DBCS-only” encoding for
wide-character fields.

2. When converting from wide-character “DBCS-only” to the user’s alphanumeric
“mixed-DBCS” encoding, the encoding difference is ignored.

For example, if the user encoding for both alpha and wide formats is defined as “DBCS” and
in the FDT, field AA is defined as alpha and field WW is defined as wide:

Format
Buffer

Value in User
Buffer

AA[,A] mixed-DBCS

AA,W DBCS-only

WW,A DBCS-only

WW[,W] DBCS-only

202

9

203

MULTIPLE PLATFORM SUPPORT

Prior to Adabas version 7, converting data for Adabas buffers between different machine
architectures (ASCII, EBCDIC) was handled by Entire Net-Work. With the increasing use of
applications where clients and servers (that is, the databases) have different encodings, it has
become necessary to expand the data transfer and conversion capabilities of Adabas itself. To
this end, Entire Net-Work determines whether the target database has translation capabilities,
and if so, passes the unconverted data on to the database for conversion there.

An additional advantage of translating data within Adabas is that other transport mechanisms
can now be supported. For UES-enabled databases, Adabas version 7 supports Entire Net-Work
access to the OS/390 or z/OS mainframe database through the TCP/IP protocol from web-based
applications or from PC-based applications such as Software AG’s Jadabas. See the ADARUN
parameters TCP and TCPURL in the Adabas Operations Manual for more information.

Adabas data translation occurs as follows:

� The client application can specify a special encoding and communicate it to the Adabas nucleus
at session open (OP command).

� The LNKUES/ADALNK converts Adabas buffer data depending on the architecture of the
caller.

� A number of utilities provide for special encoding and architecture settings.

EBCDIC to ASCII and ASCII to EBCDIC translation tables are located in an appendix of the
Adabas Installation Manual. A table listing the encoding keys provided with Adabas version
7 is located in an appendix of the Adabas Command Reference Manual and the Adabas Utilities
Manual.

Adabas DBA Reference Manual
9

204

Encodings

Adabas recognizes four types of encodings that can be specified in parallel:

Encoding Character string encoding ...

File is stored and processed internally

Default User is used as the default for Adabas local call interface requests and for
ADACMP DDEBAND.

User overrides the “default user” encoding for a user session or an ADACMP
execution. This is used to adapt to the special needs of a client program.

Collation is in acceptable sort order. The collation can be defined by language and
country standards commonly identified with a “locale” definition.

Since user data does not require conversion, Adabas equates the local “default user” and “file”
encoding to increase processing speed. Remote requests with ASCII architecture are converted
using the database “default ASCII user” encoding.

Double-byte character sets are converted using the native mainframe EBCDIC architecture
encoding: host DBCS from IBM, Fujitsu, or Hitachi.

Special applications or remote clients select a specific “user” encoding that fits their processing
environment at session open.

To ensure round-trip compatibility between architectures and encodings, Adabas uses a file
encoding that holds the superset of all characters defined in the “default user” and any specific
“user” encodings. For wide-character fields, such a file encoding defaults to the universal
character set encoding Unicode.

Collation encoding is defined for a descriptor field. Values for this encoding are obtained
algorithmically by calling a collation exit programmed to produce culturally correct sorted
keys; that is, a character dictionary. Collation encoding may be defined for both alphanumeric
and wide-character fields; the collation encoding/exit is defined on the file level for alpha and/or
wide descriptor fields.

 Multiple Platform Support
9

205

Conversion of High Value in Value Buffer

When performing searches using the S operator, the high value is usually a sequence of X’FF’
bytes.

With UES=YES, the source and target code pages control the conversion of data. The
conversion of the character X’FF’ depends on its mapping to the target code page. It is therefore
possible that the X’FF’ will not remain the X’FF’ in the converted value.

For example, when converting from 819 (ISO 8859-1 Latin1) to 37 (EBCDIC) the Latin small
letter ‘y’ with diaeresis is mapped from X’FF’ to X’DF’. As a result, searches find fewer or even
no records.

Adabas version 7.4 solves this problem as follows: with UES=YES and Alpha (or Wide)
conversion, all FROM-TO Search/Logical Read Criteria are handled in such a way that in the
TO criterion the high value characters at the value end

� are preserved when converted into the internal search value and

� are excluded from value conversion.

Note:
This solution is not implemented for the value operators (EQ, GT, GE, LE, and LT). It is limited
to the TO value of FROM-TO search criteria (S operator). This applies to alpha and wide format
fields and to the Alpha/Wide format parts of Super and Sub Descriptors.

Adabas DBA Reference Manual
9

206

Data Translation Restrictions

The following restrictions of Entire Net-work are continued with Adabas translation:

� compressed records (FB=C) are not converted.

� text literals are not converted and are passed as is. When reading records, a literal is returned
unchanged (for example, FB AA, ‘—do not convert—’,BB).

� prefetch option P is not supported in conversion.

� ET data is not converted. When reading, ET data is padded with EBCDIC blanks.

Additional restrictions imposed by Adabas include the following:

� for all C‘Xn’ command codes used by CSCI, only the control block is converted; not the buffers.
This applies only for Adabas version 7 servers.

� Entire System Server (NPR) / XCOM applications are not included in the scope of Adabas
translation. Those applications need to do their own translation.

� OS/2 unpacked numbers sign X‘Dn’ is not used and therefore, is not supported.

� Adabas does not provide user translation exits for field-level translation. Such exits are provided
by Entire Net-work.

 Multiple Platform Support
9

207

Platform Considerations

Although differences between Adabas versions running on various platforms are gradually
being reduced, the following considerations apply when porting applications:

Mainframe Open Systems OpenVMS
Fixpoint field length 2 and 4 only 1,2,4,8 1,2,4,8

Binary superdescriptor format default is U
(unpacked)

No Yes Yes

Signed binary superdescriptor Yes No No

Binary superdescriptor format conversion Yes No No

Superdescriptor with MU and PE fields Yes No No

Superfields and subfields Yes No No

Superdescriptor with floating-point format
parents

No Yes Yes

Maximum length of unpacked fields 29 27 27

Maximum length of packed fields 15 14 14

Prefetch option for read and ET/BT
commands

Yes No No

Long alpha (LA) field option Yes No No

Field arithmetic update option in format
buffer

No Yes Yes

MC command No Yes Yes

Hyperfield value generation from value
buffer

No Yes Yes

Additionally, user data provided in mainframe ADALNK user exits is not sent to ASCII
machines.

208

10

209

USER EXITS AND HYPEREXITS

This chapter provides information about the user exits activated by the ADARUN parameters
UEXn, HEXnn, and CDXnn (see the Adabas Operations Manual for descriptions of the
ADARUN parameters).

Other user exits supported by Adabas include the following:

Entry Name Use

ADACDCUX Allows you to obtain control at strategic points during ADACDC utility
processing. See the Adabas Utilities Manual.

ADACSHUX Allows you to obtain control at strategic points during Adabas Caching
Facility processing. See the Adabas Caching Facility Manual.

ADASMXIT Allows you to supply parameters to a PIN routine or examine a condition
when it is encountered before the PIN routine is invoked so that recovery
actions other than those provided by Adabas can be implemented. See chap-
ter 6 of this manual.

DSFEX1 Automatically submits the necessary job to prevent overflow of the DLOG
area. See the Adabas Delta Save Facility Manual.

UEXITA Linked with Adalink: receives control after a command is processed by a
target, the router, or Adalink itself. See the Adabas Installation Manual.

UEXITB Linked with Adalink: receives control before a command is passed to a tar-
get with the router 04 call. See the Adabas Installation Manual.

UEXRAI Allows you to change automatically generated ADARAI RECOVER JCL
before it is written to DDJCLOUT. See the Adabas Utilities Manual.

Adabas DBA Reference Manual
10

210

The user exits documented in this chapter are as follows:

Exit ADARUN Use Page
1 UEX1 Command processing (Adabas nucleus) 211

2 UEX2 Dual log processing 221

3 UEX3 User-defined phonetization 226

4 UEX4 User-generated log data 227

5 UEX5 Adabas Review hub event handler 234

6 UEX6 Data compression (ADACMP) 236

8 UEX8 Operator interface 239

9 UEX9 Data unload (ADAULD) 241

12 UEX12 Multiple log processing NO TAG

Hyperexit ADARUN Use Page
1

.

.

31

HEX01

.

.

HEX31

User-supplied algorithm to create hyperindex values

.

.

.

252

Collating Exit ADARUN Use Page
1

.

.

8

CDX01

.

.

CDX08

User-supplied algorithm to encode and decode
values for the corresponding collation descriptors

.

.

257

User Exits and Hyperexits
10

211

User Exit 1 (General Processing)

This user exit is given control by Adabas immediately after a command is received by the
Adabas nucleus. The command itself has yet to be processed except for the determination of the
type of command (simple access, complex access, update).

One of the most common applications of this user exit is to insert a security password and/or
a cipher code into the Adabas control block.

The call to the user exit is made using a standard BALR 14,15 assembler instruction. Register
1 contains the address of a parameter list. All registers must be saved when control is received
and restored immediately prior to returning control to Adabas.

Notes:

1. User exit 1 must return the same AMODE value to the calling program that was active when user
exit 1 was called.

2. The file number specified in the Adabas control block cannot be changed. If it is necessary to
change a file number with the user exit, change the field CQEFNR in the command queue
element (CQE), offset X’A6’ (see Figure 10-1 and Figure 10-8).

3. The command code field in the Adabas control block cannot be changed; a response code is
returned if you attempt to do so.

4. The length of an Adabas buffer in the Adabas control block cannot be changed.

If a buffer is not supplied by the caller, the associated address field in the IUB address list is set
to zero. Depending on the command type, if a buffer is not needed the corresponding address
is disregarded. Do not change important buffer addresses.

Adabas DBA Reference Manual
10

212

Input and Output Parameters

+0

+4

+8

R1 00*Indicators(A)

CQE(A)

IUB(A)

IUB Addr. List

+0

+4

+8

+12

+16

+20

(A) CB

(A) FB

(A) RB

(A) SB

(A) VB

(A) IB

Command
Queue

Element
(CQE)

Control Block

Format Buffer

Record Buffer

Search Buffer

Value Buffer

ISN Buffer

00 00 00

IndicatorsAddress List

Figure 10-1: General Processing User Exit (1) Parameters

* Indicator: Before calling user exit 1, the fullword indicator area are set to zero. As output from
the user exit 1 call, 00 in the first Indicator byte means that the command can be executed; a
non-zero value in the first byte means that the command should not be executed, and returns
response code 22.

User Exits and Hyperexits
10

213

Command Queue (CQ) Layout

Header

CQE1

CQE2

CQE3

CQEn–1

CQEn

The Header contains 192 Bytes

Each Element contains 192 Bytes

1

NC–1

NC

Command Queue Header

Data Base
ID

Maximum
Length

with/without
Attached

Nucleus
Status Sequence

NumberIUB Buffers

Command Queue Element

Status
of Sequence

Number

Communi–
cation

Priority File
Nr.

Command
Type

CQE ID

Command

Command

Figure 10-2: User Exit 1 Command Queue

Adabas DBA Reference Manual
10

214

Command Queue Header DSECT

000000 CQH DSECT COMMAND QUEUE HEADER
000000 CQHAIDTE DS A ADDR(IDTE) (SET BY 0–CALL)
 * THE FOLLOWING 2 LABELS MUST REMAIN CONTIGUOUS IN THE SAME ORDER
000004 CQHPID DS H PHYSICAL ID (SET BY SERVICE)
000006 CQHFLAG DS X FLAGS
 CQHFTRAN EQU X’80’ TRANSLATOR (SET BY SERVICE)
 CQHFCOMM EQU X’40’ COMMUNICATOR (SET BY SERVICE)
 CQHFNDBT EQU X’20’ NOT DATABASE TARGET (SET BY
 * SERVICE)
 CQHFISO EQU X’10’ ISOLATED ID (SET BY SERVICE)
 CQHFABR EQU X’08’ ATTACHED BUFFERS REQUIRED (SET
 * BY SERVICE)
 CQHFORCE EQU X’04’ FORCE NEW IDTE (SET BY MPM)
 CQHFANCH EQU X’02’ ANCHOR SERVICE (SET BY SERVICE)
000007 CQHFLAG1 DS X FLAGS
 CQH1NMC EQU X’80’ NO MORE COMMANDS (SET BY
 * SERVICE)
 CQH1UPG EQU X’40’ USER PROBABLY GONE (SET BY
 * 8/12/20–CALLS)
 * 8/12–CALL PARMS (THE FOLLOWING 5 LABELS MUST REMAIN CONTIGUOUS IN
 * THE SAME ORDER)
000008 CQHPARMS DS 0A PARMS (SET BY MPM)
000008 CQHPARM1 DS 0A PARM 1
000008 CQHAIUB DS A ADDR(CURRENT IUB)
00000C CQHPARM2 DS 0A PARM 2
00000C CQHACQE DS A ADDR(CURRENT CQE)
 * MPM PARMS
000010 CQHNCQES DS F NUM(CQES) (SET BY MPM)
000014 CQHIUBL DS F MAX LEN(IUB) (SET BY MPM)
 * SERVICE POST PARMS (THE FOLLOWING 4 LABELS MUST REMAIN CONTIGUOUS
 * IN THE SAME ORDER)
000018 CQHAECB DS A ADDR(SERVICE ECB) (SET BY
 * SERVICE)
00001C CQHTSN DS 0F ADDR(SERVICE TSN) (BS2000) (SET
 * BY 0–CALL)
00001C CQHTID DS 0F SERVICE TID (DOS) (SET BY 0–CALL)
00001C CQHAASCB DS A ADDR(SERVICE ASCB) (MVS) (SET BY
 * 0–CALL)

(continued on next page)

Figure 10-3: Command Queue Header DSECT (Part 1)

User Exits and Hyperexits
10

215

Command Queue Header DSECT (continued)

 * ATTACHED BUFFERS
000020 CQHAABST DS A ADDR(ATTACHED BUFFER SEGMENT
 * TABLE (SET BY MPM)
000024 CQHLABST DS F LEN(ATTACHED BUFFER SEGMENT
 * TABLE (SET BY MPM)
000028 CQHAABA DS A ADDR(ATTACHED BUFFER AREA) (SET
 * BY MPM)
00002C CQHLABP DS F LEN(ATTACHED BUFFER PREFIX) (SET
 * BY SERVICE)
000030 CQHABHWM DS F ATTACHED BUFFER SEGMENT TABLE
 * HIGH WATER MARK
 CQHABSTS EQU 4 ATTACHED BUFFER SEGMENT TABLE
 * SHIFT
 CQHABAS EQU 8 ATTACHED BUFFER AREA SHIFT
 CQHLABS EQU 256 LEN(ATTACHED BUFFER SEGMENT)
 CQHABSEG EQU X’EE’ ATTACHED BUFFER SEGMENT TABLE
 * SEGMENT ALLOCATED BYTE(MUST
 * BE <0)
 CQHABBAR EQU X’77’ ATTACHED BUFFER SEGMENT TABLE
 * BARRIER (MUST BE >=0)
000034 CQHAECQ DS A ADDR(END OF CQ) (SET BY MPM)
 * SYSTEM DEPENDENT OVERLAY AREA
000038 CQHOVLAY DS XL105
 * DOS
0000A1 ORG CQHOVLAY
000038 CQHACOMR DS A ADDR(SERVICE COMREG) (SET BY
 * 0–CALL)
 * VS1
00003C ORG CQHOVLAY
000038 CQHAJTCB DS A ADDR(SERVICE JOB STEP TCB) (SET
 * BY 0–CALL)

(continued on next page)

Figure 10-4: Command Queue Header DSECT (Part 2)

Adabas DBA Reference Manual
10

216

Command Queue Header DSECT (continued)

 * MVS
00003C ORG CQHOVLAY
 * THE FOLLOWING 3 LABELS MUST REMAIN CONTIGUOUS IN THE SAME ORDER
000038 CQHLXL DS 0F LX LIST
000038 CQHLXLN DS F’1’ NUM(LXS)
00003C CQHLXLLX DS F LX VALUE
000040 CQHET DS XL44 ENTRY TABLE (LENGTH MUST BE AT
 * LEAST ETDLEN+2*ETDELEN)
00006C CQHTSECB DS F TRANSWAP ECB
000070 CQHSAVE2 DS F R2 SAVE AREA
 * THE FOLLOWING 2 LABELS MUST REMAIN CONTIGUOUS IN THE SAME ORDER
000074 CQHSAVEC DS F RC SAVE AREA
000078 CQHSAVED DS F RD SAVE AREA
00007C CQHLXRES DS 2F LXRES PARM LIST
000084 CQHETCON DS 3F ETCON PARM LIST
 * THE FOLLOWING 2 LABELS MUST REMAIN CONTIGUOUS IN THE SAME ORDER
000090 CQHCPUID DS CL8 CPU ID (SET BY 0–CALL)
000098 CQHVMID DS CL8 VM ID (SET BY 0–CALL)
0000A0 CQHKEY DS X SERVICE PSW–KEY (SET BY 0–CALL)
 *
0000A1 ORG
0000A1 DS XL19 RESERVED
 *
0000B4 CQHANCHR DS F ANCHOR (CQHFANCH SET) (SET BY
 * SERVICE)
 *
 * THE FOLLOWING 2 WORDS MUST BE THE LAST 2 WORDS IN THE CQH AND
 * REMAIN CONTIGUOUS IN THE SAME ORDER
0000B8 CQHWI DS F SERVICE WAIT INDICATOR
0000BC CQHSEQNR DS F COMMAND SEQUENCE NUMBER (SET BY
 * 4–CALL)
 CQHLEN EQU *–CQH CQH LENGTH (MUST BE GE CQELEN)
 CQHCQE EQU * FIRST CQE

Figure 10-5: Command Queue Header DSECT (Part 3)

User Exits and Hyperexits
10

217

Command Queue Element (CQE) DSECT

000000 CQE DSECT
000000 CQECNTL DS X TS CONTROL BYTE
000001 CQEUBF DS X UB FLAGS (UBFLAG)
 *
000002 CQEBIN DS X BUFFERS IN (UBBIN)
000003 CQEBOUT DS X BUFFERS OUT (UBBOUT)
000004 CQEID DS H ID (UBID) (UBFPID SET IN
 * CQEUBF IF PHYSICAL)
 *
000006 CQEFLAG DS X G E N E R A L PURPOSE FLAGS
 CQEFBUF EQU X’80’ USER BUFFERS IN SERVICE
 * PARTITION, REGION, ADDR
 * SPACE (MUTUALLY EXCLUSIVE
 * WITH CQEFAB)
 CQEFETW EQU X’40’ ET COMMAND WAITING FOR 12–CALL
 CQEFW16 EQU X’20’ WAITING FOR 16–CALL (MUTUALLY
 * EXCLUSIVE WITH CQEF16R)
 CQEF16R EQU X’10’ 16–CALL REQUIRED (MUTUALLY
 * EXCLUSIVE WITH CQEFW16)
 CQEFAB EQU X’08’ ATTACHED BUFFER (MUTUALLY
 * EXCLUSIVE WITH CQEFBUF)
 CQEFABR EQU X’04’ ATTACHED BUFFER REQUIRED
 * (MUTUALLY EXCLUSIVE WITH
 * CQEFBUF)
 CQECML EQU X’02’ CML LOCK HELD (MVS)
 CQEHELD EQU CQEFLAG
 *
000007 CQESFLAG DS X S E L E C T I O N FLAGS
 CQSFPROC EQU X’80’ IN PROCESS
 CQSFRDYS EQU X’40’ READY TO BE SELECTED
 CQSFSUQD EQU X’20’ SEARCH FOR UQE DONE
 CQSFUQEF EQU X’10’ UQE FOUND
 CQSFA9 EQU X’08’ NOT SELECTABLE DURING
 * BSS=X’80’ STATUS
 *
 CQSFETSY EQU X’04’ NOT SELECTABLE DURING ET–SYNC
 CQSFWSPC EQU X’02’ WAITING FOR SPACE
 CQSFWISN EQU X’01’ WAITING FOR ISN IN HQ
 *

(continued on next page)

Figure 10-6: Command Queue Element (CQE) DSECT (Part 1)

Adabas DBA Reference Manual
10

218

Command Queue Element (CQE) DSECT (continued)

 * P O S T
000008 CQEAECB DS A ADDR(USER ECB) (UBECB/UBAECB)
00000C CQETID DS 0F USER TID (VSE)
00000C CQETSN DS 0F USER TSN (BS2000)
00000C CQEAASCB DS A ADDR(USER ASCB) (MVS)
 *
 * U S E R I N T E R F A C E
000010 CQEAAB DS A ADDR(ATTACHED BUFFER) (CQEFAB
 * SET)
000014 CQEAFABS DS A ADDR(FIRST ATTACHED BUFFER
 * SEGMENT TABLE BYTE) (CQEFAB
 * SET)
000018 CQENABS DS F NUM(ATTACHED BUFFER SEGMENT
 * TABLE BYTES) (CQEFAB SET)
00001C CQEAUI DS A ADDR(USER INFO) (UBAUINFO IF
 * UBFINUB SET)
000020 CQEJNAME DS CL8 USER JOB NAME (UBJNAME IF
 * UBFINUB SET)
000028 CQECKSUM DS D CHECKSUM (TOD–CLOCK)
000030 CQESEQNR DS F COMMAND SEQUENCE NUMBER
 * (CQHSEQNR)
000034 CQELSB DS F LEN(REQUIRED IUB) (UBLSB)
000038 CQEAUPL DS A ADDR(USER PARAMETER LIST)
 * (UBAUPL)
00003C CQEAUB DS A ADDR(UB)
 * W O R K A R E A FOR SVC AND PC
 * ROUTINES (LENGTH MUST BE AT
 * LEAST MAX(UBLEN,64))
000040 CQEWORK DS XL64
000080 ORG CQEWORK
000040 CQESAVE DS 16F SAVE AREA
000080 ORG CQEWORK
000040 CQEUB DS XL64 UB (MVS)
000080 ORG CQEWORK
000040 CQEAPL DS 5A APL WITHOUT ADDR(ACB) (MVS)
000054 ORG
 *

(continued on next page)

Figure 10-7: Command Queue Element (CQE) DSECT (Part 2)

User Exits and Hyperexits
10

219

Command Queue Element (CQE) DSECT (continued)

 * U S E R I D (COMMUNICATION)
000080 CQEUSID DS 0XL28 USER ID (UBAUID IF UBFINUB SET)
000080 CQECPUID DS D CPU ID (IDCPUID) (THE USER WILL
 * BE IDENTIFIED EXTERNALLY BY THE
 * CONTENTS OF CQEJNAME IF THE
 * LOW–ORDER BIT OF CQECPUID IS 0,
 * AND BY THE CONTENTS OF CQEUID
 * IF THE BIT IS 1)
000088 CQEVMID DS CL8 VM ID (IDVMID)
000090 CQEOSID DS F OPSYS ID
000094 CQEUID DS XL8 ID (UBUID/ACBADD2)
 *
00009C CQERBIBL DS 0F ACTUAL RB/IB LENS
00009C CQERBL DS H ACTUAL RB LEN
00009E CQEIBL DS H ACTUAL IB LEN
0000A0 CQEPASID DS H CALLER’S PASID (MVS)
0000A2 CQE16CTL DS X 16–CALL TS CONTROL BYTE (CQEW16
 * SET)
0000A3 CQEKEY DS X CALLER’S PSW–KEY
0000A4 CQEPRTY DS X PRIORITY OF USER (UBPRTY IF
 * UBFINUB SET)
0000A5 CQECMDT DS X COMMAND TYPE (UBCMDT)
 * EQU X’20’ RESERVED
 * EQU X’10’ RESERVED
 CQETET EQU X’08’ ET COMMAND
 CQETUC EQU X’04’ UPDATE COMMAND
 CQETCC EQU X’02’ COMPLEX COMMAND
 CQETSC EQU X’01’ SIMPLE COMMAND
0000A6 CQEFNR DS H FILNR (ACBFNR)
 *

(continued on next page)

Figure 10-8: Command Queue Element (CQE) DSECT (Part 3)

Adabas DBA Reference Manual
10

220

Command Queue Element (CQE) DSECT (continued)

 * TARGET AND SYSTEM DEPENDENT OVERLAY AREA, WHICH CAN BE USED AS
 * FOLLOWS:
 * – BY THE ROUTER 04–CALL PRIOR TO SETTING ’CQSFRDYS’ IN
 * ’CQESFLAG’;
 * – BY THE TARGET FROM THE TIME ’CQSFRDYS’ IS SET UNTIL EITHER A
 * ROUTER 12–CALL FOR WHICH NO 16–CALL IS REQUIRED (’CQEF16R’ IN
 * ’CQEFLAG’ IS NOT SET) OR UNTIL THE ROUTER 16–CALL OR COMMAND
 * TIMEOUT OCCURS (’CQE16CTL’ CONTAINS X’FF’ INSTEAD OF X’00’);
 * – BY THE ROUTER 16–CALL FROM THE TIME IS ACQUIRES THE CQE
 * (SUCCESSFULLY SETS ’CQE16CTL’ TO X’FF’) UNTIL IT FREES THE
 * CQE (SETS ’CQECNTL’ TO X’00’).
0000A8 CQEOVLAY DS XL20
 *
0000BC ORG CQEOVLAY M V S
 * THE FOLLOWING 2 LABELS MUST REMAIN CONTIGUOUS IN THE SAME ORDER
0000A8 CQESAVED DS A RD SAVE AREA
0000AC CQESAVEE DS A RE SAVE AREA
 * THE FOLLOWING 3 LABELS MUST REMAIN CONTIGUOUS IN THE SAME ORDER
0000B0 CQESAVE3 DS 0F R3 SAVE AREA
 *
0000B0 CQEARB DS A ADDR(RB)
0000B4 CQEAIB DS A ADDR(IB)
0000B8 ORG CQEOVLAY N U C L E U S
0000A8 CQEAUQE DS A ADDR(UQE)
0000AC CQEACA DS A ADDR(WORK–AREA) FOR CONTINUATION
0000B0 CQERQST DS F REQUESTED RESOURCE (SPACE/FNR/
 * ISN)
0000B4 CQETHROB DS F TIME OF LAST THROWBACK
0000B8 CQECTHR DS 0F CMD COUNT OF LAST THROWBACK
0000B8 CQEAIUB DS 0A ADDR(IUB)
0000B8 CQET12C DS F TIME OF MPM 12–CALL
0000BC ORG
0000BC CQECMD DS XL2 COMMAND
 *
0000BE CQEX DS H CQE INDEX
 CQELEN EQU *–CQE CQE LENGTH
 *
 *
 AQUQE EQU CQEAUQE–CQE

Figure 10-9: Command Queue Element (CQE) DSECT (Part 4)

User Exits and Hyperexits
10

221

User Exit 2 (Dual Log Processing)

This user exit is given control by the Adabas nucleus during a switch from one dual log to the
alternate dual log for the purpose of copying the log before it is reused by Adabas. This switch
occurs only if dual data protection logging and/or dual command logging is in effect for the
session.

The user exit routine must invoke a procedure whereby the appropriate function of the ADARES
utility (CLCOPY or PLCOPY) is executed.

User exit 2 is invoked

� during Adabas nucleus startup if a PLOG/CLOG has to be copied;

� whenever a dual command or dual protection log switch occurs between two log datasets;

� during Adabas nucleus shutdown.

The user exit is provided with information about the status of the dual log datasets.

The user exit can decide which action is to be taken:

� Ignore the call;

� Submit a job to copy the log dataset just filled up (ADARES utility);

� Wait for completion of the copy job just submitted.

An example of user exit 2 is supplied with the Adabas installation procedure. Refer to the
Adabas Installation Manual for more information.

The call to the user exit is made using a standard BALR 14,15 Assembler instruction. All
registers must be saved when control is received and restored immediately prior to returning
control to Adabas. Register 15 contains an action code as described on page 225.

Note:
User exit 2 must return the same AMODE value to the calling program that was active when user
exit 2 was called.

Adabas DBA Reference Manual
10

222

User Exit 2 Calling Sequence

User exit 2
present

Write message
‘Now it’s too late

to copy DDxLOGRn’

R15=0?

Wait the number of
seconds as specified
in R15

Use new log
dataset

no

yes

no

no

Obtain information about
log dataset (flags, time
stamps) and create a
parameter list from these
actual values.

yes

Start

yes

End

Dataset
to be overwritten

contains

noyes

Start-up? yes
no

Call user exit 2

U0020 ABEND and
parm error 52

data?

Dataset
to be overwritten

contains
data?

Figure 10-10: Dual Log Processing Flow

User Exits and Hyperexits
10

223

Input Parameters

+0

+4

+8

+12

R1 +0 Indicator

+1 Flag 1

+2 Flag 2

+3

TIMER 1

TIMER 2

PLOG

’C’–CLOG, ’P’–PLOG

CLOGR1/PLOGR1 –Flags

CLOGR2/PLOGR2 –Flags

DBID

+0

+2

+16

PLOG 1

PLOG 2
+0

+2

(A) Ind/Flags

(A) Timer 1

(A) Timer 2

(A) PLOG/DBID

(A) PLOGNUM

Address List

Session
Status

Figure 10-11: Dual Log Processing User Exit (2) Parameters

The input parameters for the address list are as follows:

Parameter A fullword address of . . .

0 (R1) the C/PLOG indicators and flag 1/2.

4 (R1) the four-byte timer 1 field.

8 (R1) the four-byte timer 2 field.

12 (R1) the current session’s PLOG number, followed by the database ID.

16 (R1) a four-byte area where the first two bytes contain the number of PLOG1, and
the second two bytes hold the number of PLOG2.

Other input parameters are explained in the following table:

Adabas DBA Reference Manual
10

224

Parameter Usage

Flag 1 Status flags for DD/PLOGR1 and DD/CLOGR1; and

Flag 2 Status flags for DD/PLOGR2 and DD/CLOGR2:

B’1...’ : Dataset being written by nucleus

B’.1..’ : Dataset has been completed by nucleus

B’.11.’ : Being copied by ADARES

B’0000 0000’ : Dataset is empty (or copied) and reusable for the nucleus.

All other flag 1/2 field values are reserved. For DD/CLOGR1/2 only: X‘08’
for CLOGLAYOUT=5. Flag 1/2 bit settings can be combined (X‘40’ and
X‘20’ as X‘60’, for example).

If OPENOUT is specified, these flags are set after OPEN is issued for the
output dataset; otherwise, the flags are set before the OPEN is issued.

Session
Status

Contains information about the status of the nucleus when the exit was
called:

X‘S’ Called during nucleus session start-up.

X‘T’ Called while terminating the nucleus session.

X‘W’ Called following a dual protection log switch.

TIMERn Time-stamp (highest four bytes of a STCK instruction) for the time the first
block of the log dataset has been written.

TIMER1 for DD/PLOGR1 and DD/CLOGR1, and
TIMER2 for DD/PLOGR2 and DD/CLOGR2

PLOG Current session protection log number (two bytes). This value is set for
PLOG only; the field contains X‘00’ for CLOG.

DBID Database ID (two bytes).

PLOG1/2 Two two-byte PLOG numbers found on PLOG 1 and PLOG 2. If the previous
nucleus session ended abnormally, these four bytes contain that session‘s
PLOGNUM value, which can be used in the initial user exit 2 call to copy
that session’s PLOG. During any subsequent session, these bytes contain the
current PLOGNUM value.

If the preceding session ends abnormally, these four bytes contain the ended
session’s PLOG numbers during the nucleus start phase. This PLOG
information is needed during the start phase to assign the correct PLOG num-
bers to the PLOG areas to be copied. During subsequent exit calls, the cur-
rent PLOG values are in these fields.

User Exits and Hyperexits
10

225

Output Parameter

Parameter Usage

R15 = 0 Nucleus continues processing.

R15 > 0 R15 is treated as the number of seconds to wait before calling user exit 2
again. During this time, the nucleus is in a “hard” wait. No commands are
processed during the wait.

BS2000 Options for Invoking User Exit 2

When using user exit 2 with BS2000 systems, the name of the ADARES CLCOPY or PLCOPY
job is no longer “hard-coded” in the user exit as in previous releases. Therefore, there are now
two ways of specifying the /ENTER job:

Method 1

Create a job variable containing the complete “enter job” command. For example:

/DCLJV ENTER.ADARES.PLCOPY,LINK=*DDJBPLC

/SETJV *DDJBxLC,C’ENTER JOB.ENTER.ADARES.PLCOPY,ST=IMM’

Note that all operands of the /ENTER command may be used. The presence of the /DCLJV
statement overrides the other possibilities. If necessary, the content of the job variables can be
changed during a nucleus session.

Use the link names “*DDJBPLC” for assigning the ADARES PLCOPY job, and “*DDJBCLC”
for assigning the ADARES CLCOPY job.

Method 2

Omit the JV specification. The user exit 2 will then issue the following command:

’ENTER RES.E.xLCO’

Note:
For BS2000 systems, user exit 2 is delivered as a source element only.

Adabas DBA Reference Manual
10

226

User Exit 3 (User-Defined Phonetization)

This user exit may be used to perform user-defined phonetization. It is given control by the
ADACMP utility or the Adabas nucleus whenever phonetic processing is required.

The user exit must develop a three-byte phonetic key using the value supplied. The address of
the resulting phonetic key must be placed at 8(R1) before control is returned.

Note:
User exit 3 must return the same AMODE value to the calling program that was active when user
exit 3 was called.

Input Parameters

Register 1 contains the address of the following parameter list:

+0

+4

+8

R1

Value

3-byte phonetic key
computed by the user exit

*The address of the key
must be placed in (R1)+8
before control is returned.

(A) Value addr.

(A) Length

(A) Value

(A) Key*

Length (fullword)

Key

Address List

The value to be
phoneticized
(uncompressed)

Figure 10-12: User-Defined Phonetization User Exit (3) Parameters

Parameter A fullword address of . . .

0(R1) the four-byte length for the value to be phoneticized.

4(R1) the address of the value to be phoneticized.

8(R1) a three-byte location to contain the phonetic key. This address is set to zero
before the user exit and must be set to the actual address during the user exit.

The call to the user exit is made using a standard BALR 14,15 assembler instruction. All
registers must be saved when control is received and restored immediately prior to returning
control to Adabas. The content of R15 is ignored.

User Exits and Hyperexits
10

227

User Exit 4 (User-Generated Log Data)

User exit 4 is called immediately before an Adabas command log record is to be written. It may
be used to generate any required user log data (SMF records) special statistics, or to suppress
writing a log record.

Adabas supports two different command log formats. The ADARUN CLOGLAYOUT
parameter determines which format is used:

� CLOGLAYOUT=4 (the default) specifies the older format. This format has been in use since
Adabas version 4.

Note:
Some Adabas releases using this older format are no longer supported by Software AG. Future
releases of Adabas will no longer support this older format.

� CLOGLAYOUT=5 specifies the new format, which is supported only in Adabas versions 5.2
and above.

Appendix A displays both formats.

Ensure that your user exit and command log evaluation programs recognize the format in use
before switching to it.

Note:
User exit 4 must return the same AMODE value to the calling program that was active when user
exit 4 was called.

Adabas DBA Reference Manual
10

228

+0

+4

+8

+12

R1 00 Action to be taken on return
=X‘00’ – log the record (default)
>X‘00’ – do not log

ADALOG I/O area

Record to be logged

(A) Code

(A) Record

(A) Rec. End

(A) CQE

Address List

CQE

Figure 10-13: User-Generated Log Data User Exit (4) Parameters

Parameter Address of . . .

0(R1) a byte containing a logging action code. This byte contains 00 (to log the
record) upon each call. If changed to a nonzero value, this record will not be
written to DDLOG.

4(R1) the record to be logged. This address is zero if the exit is called at the end of
the nucleus session.

8(R1) the end of the Adabas I/O area. This address is zero if the exit is called at the
end of the nucleus session.

12(R1) the command queue element (CQE). This address is zero if the exit is called
at the end of the nucleus session.

The record to be logged may be modified by the user exit. The record’s address in 4(R1) may
also be modified. The logging action code must always be specified before returning to the
Adabas nucleus.

Warning:
When modifying the record, do not exceed the end address of the ADALOG I/O area contained
in 8(R1).

User Exits and Hyperexits
10

229

PRILOG : Printing the Command Log
Adabas provides the PRILOG print program to read and report the contents of Adabas command
logs in either version 4 or version 5 command log layout format.

PRILOG reads a sequential Adabas command log that has been produced directly by the Adabas
nucleus (DD/LOG file) or by the ADARES CLCOPY utility when the Adabas nucleus uses dual
or multiple command logging.

PRILOG is supplied in both source and object form.

Note:
Although PRILOG can be customized, Software AG does not support the program when it has
been modified by the user.

In source form, three modules (PRILOG, CCSTCK, and PRILOGD) are supplied for the OS/390
or z/OS, VSE/ESA, and BS2000 operating systems. These modules replace all PRILOG
versions supplied with earlier versions of Adabas.

Two of the PRILOG modules are system-independent components and one is specific to a
particular operating system:

PRILOG interprets control statements; generates report lines from CLOG records.

CCSTCK converts internal timestamp information on CLOG records into a more useful
form before printing, making it compliant with Year 2000 standards.
CCSTCK is provided independently so it can also be used by other programs.

PRILOGD retrieves an input control card image and a CLOG record and prints a line.
PRILOGD is system-dependent. It contains a number of parameters that are
described in the source.

Print Program Input

As input, the PRILOG program requires CLOG records and control cards.

Control cards must begin with the program name “PRILOG6” in columns 1 through 7; at least
one space must follow the program name before parameters are entered.

Parameters can be entered up to column 71. No continuation or parameter splitting is permitted.
Additional parameters can be entered on a separate PRILOG6 card.

A comment line begins with an asterisk (*). Comments may also be added to the right side of
the parameter string as long as the comment is separated from the parameter value by at least
one space.

Adabas DBA Reference Manual
10

230

Control Card Parameters

Two parameters can be entered on the control cards:

CLOGLAYOUT={ 4 | 5 }

CLOGLAYOUT indicates the format of the CLOG records being used as input to the PRILOG
program. Valid values are 4 and 5; the default value is 5.

FIELDS= { (item, ...) | (LIST) }

FIELDS indicates the item (or items) from the CLOG records that are to be printed where “item”
is one of the following:

Item Description

FB format buffer

IB ISN buffer

IOL I/O list

LIST Adabas control block field list

RB record buffer

SB search buffer

UXB user exit B buffer

VB value buffer

The default value is LIST. Multiple “items” can be listed in any order.

If a data item listed in the FIELDS parameter is not being captured during the ADALOG session
and is therefore not present in the CLOG record, the request to print that data item is ignored.

PRILOG6 Messages

PRILOG6 messages are documented in the Adabas Messages and Codes manual as “PL6nnna”
(independent) and “PL6ann” (system-dependent) messages.

User Exits and Hyperexits
10

231

Installing and Using PRILOG under VSE/ESA

The following components comprise the PRILOG print program for VSE/ESA:

Member Description

PRILOG.A Independent PRILOG assembly language source module

PRILOGD.A VSE/ESA-dependent PRILOG assembly language source module

CCSTCK.A Independent Adabas STCK conversion
assembly language source module

PRILOG.OBJ Object deck for PRILOG

PRILOGD.OBJ Object deck for PRILOGD

CCSTCK.OBJ Object module for CCSTCK

PRILOG.PHASE Executable phase for PRILOG

ASMPLOG.X Sample VSE/ESA JCS to assemble, catalog, and link the PRILOG,
CCSTCK, and PRILOGD components into the PRILOG.PHASE

LNKPLOG.X Sample VSE/ESA JCS to link the PRILOG.PHASE from the
PRILOG.OBJ, CCSTCK.OBJ, and PRILOGD.OBJ modules

RUNPLOG.X Sample VSE/ESA JCS to execute the PRILOG utility

The PRILOG.PHASE may be executed from the library without additional preparation.
However, if it becomes necessary to reassemble and relink the PRILOG.PHASE, the following
points must be observed:

� The PRILOG.A, CCSTCK.A, and PRILOGD.A modules must be assembled using the IBM
high-level Assembler (ASMA90).

� When linking PRILOG.PHASE, set the phase AMODE and RMODE attributes to 24-bit
(AMODE(24) RMODE(24)).

� The provided sample JCS members ASMPLOG.X and LNKPLOG.X must be modified to suit
your site’s requirements. Check the LDEST, DEST, volume, and extent information as well as
the library and sublibrary information provided in the JCS members.

Adabas DBA Reference Manual
10

232

Executing PRILOG under VSE/ESA

Execute the PRILOG print program by running the PRILOG.PHASE in either a static or
dynamic partition.

The PRILOG program uses three files:

File Description

SYSIPT PRILOG control card data; may be read from any valid device that can be
assigned to SYSIPT

SYSLST PRILOG report file; may be written to any device that can be assigned to
SYSLST

SYS001
(DDCLOG)

Sequential command log input file; this file may reside on any
IBM-supported disk device, or it may be read from tape

Notes:

1. The PRILOG control cards must be available from SYSIPT. If on disk or tape, they must be
80-byte records with FIXED record format.

2. The PRILOG report file must be written to SYSLST. If assigned to disk or tape, the output records
are 121 bytes in length with FIXED record format. ASA control characters are used for printer
control and are in the first byte of each print record.

3. The sequential command log file must be assigned to SYS001. The file may be on disk or tape
and may not have a block size greater than 32,760 bytes. The record format is VARBLK.

The provided RUNPLOG.X JCS member may be modified according to your installation’s
requirements to execute the PRILOG print program. Modify the DEST, extent, DLBL,
sublibrary, and volume information before submitting the job.

User Exits and Hyperexits
10

233

Installing and Using PRILOG under OS/390 or z/OS

The following components comprise the PRILOG print program for OS/390 oe z/OS:

Member Library Description

PRILOG ADAvrs.MVSSRCE Independent
PRILOG assembly language source module

PRILOGD ADAvrs.MVSSRCE OS/390- or z/OS-dependent
PRILOG assembly language source module

CCSTCK ADAvrs.MVSSRCE Independent Adabas STCK conversion
assembly language source module

ASMPLOG ADAvrs.MVSJOBS Sample JCL to assemble and link the PRILOG,
CCSTCK, and PRILOGD components into the
PRILOG load module.

JPRILOG ADAvrs.MVSJOBS Sample JCL to execute the PRILOG utility

The PRILOG program uses three files:

Files Description

DDCARD used for input parameter data; may be any sequential 80-byte record file
supported by QSAM.

DDPRINT used for the output command log report; may be assigned to SYSOUT or to
any 121-byte record dataset with record format of FBA.

DDCLOGIN used for the input sequential command log file; must be a sequential file
produced by the ADARES CLCOPY utility, or the direct DDLOG sequen-
tial file produced by an Adabas nucleus when single command logging is
used.

Adabas DBA Reference Manual
10

234

User Exit 5 (Adabas Review Hub Event Handler)

User exit 5 is called by the Adabas nucleus when an event occurs with the Adabas Review hub.

An event is defined as

� a connection made with the Adabas Review hub during Adabas session open;

� a connection broken with the Adabas Review hub during Adabas session close; or

� a non-zero return code received from the send operation for a command log record.

The exit is invoked with AMODE=31 and should return control in the same state.

The exit is required to process logging errors. It determines how the failure is handled. The
record that was not logged and the response code received from the Adabas Review hub logging
request are provided to assist in making the determination.

Input Parameters

On entry, the register 1 points to the following parameter list:

+0

+1

+2

+4

R1

+8

Call Type

Operation Code

Response Code

Wait Time (in seconds)

A (Command Log)
CLOG
Record

User Exits and Hyperexits
10

235

Parameter Usage

0(R1) Exit call indication. The value of this byte can be:

O connection with Adabas Review hub opened;

C connection with Adabas Review hub closed; or

L sending logging error to Adabas Review hub.

1(R1) Action to handle a logging error (ignored for open and close). The exit must
provide one of the following values for this field in the parameter list for a
logging error:

W wait a specified time and then retry;

R retry logging operation immediately; or

I ignore the logging failure and continue without consequence.

2(R1) Response code for logging errors. This response code is the same as the
Adabas response code found in the Adabas Messages and Codes manual.

4(R1) Fullword where the exit must provide a wait time (in seconds) for the logging
failures that are to be retried after waiting.

8(R1) Address of the command log record that the Adabas nucleus was attempting to
send to the Adabas Review hub.

Other Register Values at Entry

R13 save area of calling Adabas nucleus routine

R14 return address in Adabas nucleus

R15 entry point address for exit

Output Parameters
� For logging errors, the exit is required to set a value in the ‘operation’ field. If the wait value

(W) is chosen, the exit is also required to provide a non-zero time value.

� Register 15 should be set to zero. All other registers should be returned intact.

Adabas DBA Reference Manual
10

236

User Exit 6 (User Processing Before Data Compression)

This user exit can be used to perform user processing on a record before it is processed by the
ADACMP COMPRESS utility. The user program can be written in Assembler language or
COBOL. The ADACMP COMPRESS utility job must specify the ADARUN UEX6=program
parameter, where “program” is the name of the user program.

So that user exit 6 can append records to the input, it is called by the ADACMP COMPRESS
utility function immediately after

� a record has been read from DD/EBAND; or

� an end-of-file condition has occurred on DD/EBAND.

yes

no

no

Read record
from DDFILEA

End
of file?

Call User Exit 6
and pass on

record just read

Process
record?

Compress record
and write to
DDAUSBA

Recall
exit?

no

yes

no
Process
record?

Compress record
and write to
DDAUSBA

Recall
exit?

yes

yes

no

Call User Exit
without record

yes

Figure 10-14: ADACMP User Processing User Exit Flow

User Exits and Hyperexits
10

237

+0

+4

+8

+12

R1 Input record as read from DDEBAND

Output record
(Record to be compressed)

(fullword)

+16

(A) Input Rec.

(A) Rec. Leng.

(A) Output Rec.

(A) Output Len.

(A) FILE= Value

 FILE= value

Output Record
Length

(fullword)
Input Record
Length

Address List

Value of the ADACMP
FILE parameter (fullword)

Figure 10-15: ADACMP User Processing User Exit (6) Parameters

Note:
User exit 6 must return the same AMODE value to the calling program that was active when user
exit 6 was called.

Input Parameters

Parameter Usage

0 (R1) Address of an input record. The length field preceding the variable record is
skipped. The address is of a fullword containing -1 (X‘FFFF FFFF’) if the user
exit is called after ADACMP detects end-of-file in DD/EBAND.

4 (R1) Address of the field containing the input record length. For fixed records, this
is a logical record length. For variable records, this is the length of the actual
data only (excluding the length field itself). The address points to a fullword
containing minus 1 (X‘FFFFFFFF’) if the user exit is called after ADACMP
detects end-of-file in DD/EBAND.

8 (R1) Contains binary zeros on entry to the user exit (see Output Parameters).

12 (R1) Contains binary zeros on entry to the user exit (see Output Parameters).

16 (R1) Address of the FILE parameter value specified by the ADACMP COMPRESS
utility job. The address is in the rightmost/low-order two bytes. The location
and content of this fullword must remain unchanged during the time of the
user exit. If ADACMP COMPRESS did not specify the FILE parameter, the
fullword is X‘0000’.

Adabas DBA Reference Manual
10

238

Output Parameters

Parameter Usage

8 (R1) Address of the user exit output record. This record will be used as input to the
ADACMP compression algorithm. The address of this record must be placed
into 8 (R1) each time the user exit is called.

If this field contains binary zeros on return, ADACMP will ignore the input
record and will continue processing.

12 (R1) Address of a 4-byte field containing the length of the returned record. The
address of this field must be placed into 12 (R1) each time the exit is called. If
this field contains binary zeros on return, ADACMP will ignore the record and
will continue processing.

Though the length field pointed to by 12 (R1) has a length of 4 bytes, only the
low-order/rightmost halfword is used (bytes 3 and 4). If byte 2 contains a
X‘01’ on return, the exit is recalled before the next record is read from
DDEBAND. This enables the user to return more than one record to
ADACMP for each record read from DD/EBAND.

User Exits and Hyperexits
10

239

User Exit 8 (Operator Interface)

This user exit receives control from the Adabas nucleus whenever the nucleus starts or stops,
or whenever the nucleus or an Adabas utility receives a message from or sends a message to the
operator. User exit 8 can be used to provide specific instructions to the operator

� when the nucleus starts and (normally) stops operation;

� as added information when Adabas sends console messages to the operator;

� to confirm commands entered by the operator.

User exit 8 is invoked

� (MODE=MULTI only) after Adabas startup, as soon as the nucleus is able to answer calls from
user programs. At this point, the nucleus is now active.

� immediately after the Adabas nucleus or utility issues a console operator message. The user exit
call is in addition to the standard message processing; the message itself cannot be changed
during the user exit.

� after the Adabas nucleus or utility receives an operator command. The exit is called before the
command is actually processed, and can reject or replace the command. The command cannot
be modified in its original area.

� before a normal Adabas nucleus stop. At this point, the nucleus is no longer active; any more
nucleus calls result in response code 148. This exit is not called if the nucleus ends abnormally.

+0

+4

+8

R1 (A) Indicator

(A) DBID

(A) Info.

Call Type (STOW) Indicator

Database ID

Function-dependent
Information

Address List

Figure 10-16: Operator Interface User Exit (8) Parameters

Adabas DBA Reference Manual
10

240

Note:
User exit 8 must return the same AMODE value to the calling program that was active when user
exit 8 was called.

Input Parameters

Parameter Usage

0 (R1) Address of the byte containing the call type (“STOW”) indicator:

S called at nucleus start

T called at normal nucleus termination

O called with an operator message to the nucleus/utility

W called with a nucleus/utility message to the operator

4 (R1) Address of the fullword containing the database ID.

8 (R1) Address of variable-length message-related information for “O” and “W” type
calls. The information at this address has the following format:
O The one-byte message length, followed by the alphanumeric message.

The length excludes the length byte itself. If the message is to be
changed, location 8(R1) must point to the new message on return. This
message is structured as described above. If the message is to be
suppressed, location 8(R1) must point to a two-byte field containing
X‘0140’.

W 8(R1) points to the message, which has the following structure:

DC X’message-length+4’

DC X’0’

DC X’message-text’

User Exits and Hyperexits
10

241

User Exit 9 (ADAULD)

User exit 9 is called by ADAULD whenever a compressed record is ready to be written. The
user exit decides whether a record is written to DD/OUT1, DD/OUT2, both, or neither.

+0

+4

+8

R1 Number of output data sets
(fullword)

Compressed record

x

1 – only DDOUT1
2 – both DDOUT1 and 2

Response of user exit 9
(single character)
’I’ – ignore record
’1’ – write to DDOUT1
’2’ – write to DDOUT2
’3’ – write to DDOUT1 and 2
If this value is not set before return
to ADAULD, a ’1’ is assumed.

(A) Dataset Cnt.

(A) Resp. Code

(A) Record

Address List

Count

Figure 10-17: ADAULD User Exit (9) Parameters

Notes:

1. User exit 9 must return the same AMODE value to the calling program that was active when user
exit 9 was called.

2. DDOUT1 & 2 must have the same block size, or an ADAULD error occurs.

3. The compressed record pointed to by the third address has the following structure:

AL2 (L1) total length (inclusive)
AL2 (L2) record length (inclusive)
AL4 (ISN)
XL (L2 - 8) ’...compressed fields...’
XL (L1 - L2 - 2)’...DVT entries...’

Adabas DBA Reference Manual
10

242

Read next
compressed record

from ADABAS

yes End
of

file?

Call User Exit 9

Exit–9
RSP=’I’

Exit–9
RSP=’3’

yes

Write to DDOUT1

nucleus

Exit–9
RSP=’2’

yes
Write to DDOUT2

Write to DDOUT1
and DDOUT2

yes

no

no

no

Figure 10-18: User Exit 9 Output Control Flow

The call to the user exit is made via a standard BALR 14,15 assembler instruction. All registers
must be saved when control is received and restored immediately prior to returning control to
ADAULD. The content of R15 is ignored.

User Exits and Hyperexits
10

243

User Exit 12 (Multiple Dataset Log Processing)

Note:
UEX2 and UEX12 are mutually exclusive for an Adabas nucleus session: only one can be
specified.

This user exit is given control by the Adabas nucleus during a switch from one multiple log
dataset to another for the purpose of copying the log dataset before it is reused by Adabas. This
switch occurs only if multiple dataset data protection logging and/or multiple dataset command
logging is in effect for the session.

The user exit routine in designed to invoke a procedure that will execute the appropriate function
(CLCOPY or PLCOPY) of the ADARES utility.

User exit 12 is invoked

� during Adabas nucleus startup if a multiple PLOG/CLOG dataset has to be copied;

� whenever a switch to another log dataset occurs;

� during Adabas nucleus shutdown.

The user exit is provided with information about the type of log (PLOG or CLOG) and the status
of the multiple log datasets.

The user exit can decide which action is to be taken:

� Ignore the call and allow Adabas to proceed;

� Submit a job to copy and mark as empty the log dataset just filled (ADARES utility);

� Direct Adabas to wait for a specified interval, then call the user exit again with updated
PLOG/CLOG dataset status information. During the wait interval, no commands that may
produce log records for the log type being processed are allowed to proceed.

An example of user exit 12 is supplied with the Adabas installation procedure. Refer to the
Adabas Installation Manual for more information.

The call to the user exit is made using a standard BASSM R14,R15 Assembler instruction. All
registers must be saved when control is received and restored immediately prior to returning
control to Adabas. Register 15 contains an action code as described on page 225.

Note:
User exit 12 must return the same AMODE value to the calling program that was active when
user exit 12 was called. The recommended Assembler instruction to return is BSM 0,R14.

Adabas DBA Reference Manual
10

244

User Exit 12 Calling Sequence

User exit 12
present

Write message
‘Now it’s too late

to copy DDxLOGRn’

R15=0?

Wait the number of
seconds as specified
in R15

Use new log
dataset

no

yes

no

no

Obtain information about
log dataset (flags, time
stamps) and create a
parameter list from these
actual values.

yes

Start

yes

End

Dataset
to be overwritten

contains

noyes

Start-up? yes
no

Call user exit 12

U0020 ABEND and
parm error 52

data?

Dataset
to be overwritten

contains
data?

Figure 10-19: Multiple Log Processing Flow

User Exits and Hyperexits
10

245

User Exit Interface

Optionally, the user exit may initialize its operation. It may store any value in field EX12USER
of the EX12PARM parameter block to keep track of its resources. This field is considered as
“owned” by the user exit and is supplied again for all subsequent executions of the exit. It is set
to zero when the exit is first called and is not modified by Adabas thereafter.

The user exit is called again during termination to do any necessary finishing or ‘cleanup’ work.

Parameters

+0R1 (A) Parameter Block

Address List

Header section

Log dataset entry

Log dataset entry

–––––

EX12PARM

Figure 10-20: User Exit 12 Parameters

DSECT of the EX12PARM Parameter Block

 Macro
 EX12PARM
.**
.* Name Ex12Parm *
.* Component ADABAS User Exit *
.* Function Parameter list for User Exit 12 *
.* (replacement for User exit 2 for use when there are *
.* more than 2 PLOGs or CLOGs) *
.* Parameters None *
.* Restrictions None *
.* Notes None *
.**

Adabas DBA Reference Manual
10

246

.*
EX12PARM DSECT , User Exit 12 Parameter List
*
EX12HDR DS 0F Common header section
*
EX12USER DS F Reserved for the user. This field +
 is initialized to zero before the +
 exit is called the first time, and +
 will not be altered by ADABAS after +
 that. It can be used to maintain +
 information across invocations.
*
EX12LOGT DS X Log type
EX12PLOG EQU C’P’ PLOG
EX12CLOG EQU C’C’ CLOG
*
EX12TYPE DS X Call type
EX12TBEG EQU C’S’ Nucleus start
EX12TSW EQU C’W’ Log switch
EX12TEND EQU C’T’ Nucleus termination
 DS XL2 Reserved
*
EX12NLOG DS F Number of logs
EX12DBID DS F Database ID
EX12NUCI DS F Nucleus ID
*
EX12PLGN DS F Current session PLOG number +
 (zero for CLOGs)
EX12NCMP DS F Log just completed
EX12STAT DS X Flags of next log in sequence
EX12WNUC EQU X’80’ Being written by the nucleus
EX12FULL EQU X’40’ Completed by the nucleus
EX12RES EQU X’20’ Being copied by ADARES
EX12CL5 EQU X’08’ CLOGLAYOUT=5
EX12UNUS EQU X’00’ Unused and/or copied
 DS XL3 Reserved
 DS 4F Reserved
*
EX12HDRL EQU *–EX12HDR Length of header section
*
EX12LOG DS 0F Start of individual log dataset +
 entries. This section is repeated +
 for the number of logs specified in +
 field EX12NLOG
*

User Exits and Hyperexits
10

247

EX12LTIM DS XL8 Time stamp of write to log dataset
EX12LNUM DS F Number of log dataset
EX12LFLG DS X Flags (mapped as in EX12STAT)
 DS XL3 Reserved
 DS 4F Reserved
*
EX12LOGL EQU *–EX12LOG Length of a log dataset entry
*
*
 MEnd

Output Parameter

Parameter Usage

R15 = 0 Nucleus continues processing.

R15 > 0 R15 is treated as the number of seconds to wait before calling user exit 12
again with updated status for all log datasets. During this time, no commands
that may create log entries are processed.

Activating the Sample User Exit

The sample user exit is written in Assembler language. It performs the following functions:

� Issues a message identifying the reason and the type of log for which it was called.

� Issues a message with the status and timestamp of all log datasets that are not empty.

� If any log dataset is full and at least one log dataset has a status that is different from the last
time the exit was called, the exit reads 80-byte records from an input file and writes them to an
output file. It replaces all occurrences of the character “?” with either “P” or “C”, depending
on whether the exit was invoked to process a PLOG or CLOG event, respectively. This allows
the input file to accommodate an event for either log type. Normally, the input file contains job
control statements and the output file is directed to a job execution queue.

� If at least one log dataset is not full, the exit returns to the caller with R15 zero, which allows
Adabas to proceed.

� If all log datasets are full, the exit returns to the caller with R15 nonzero, which directs Adabas
to wait for the number of seconds in R15, then call the exit again with an updated status of all
log datasets. The default delay time is 30 seconds.

Adabas DBA Reference Manual
10

248

OS/390 or z/OS

The sample user exit UX12SAMP is delivered on OS/390 and z/OS as source and as a load
module that can be used without change or reassembly.

The source and load forms of the user exit are delivered in the Adabas source and load libraries,
respectively. The job to assemble the user exit UX12ASML is located in the Adabas jobs library.
The jobs library also contains a sample job UX12CJOB to be customized and submitted by the
user exit that invokes the ADARES utility PLCOPY or CLCOPY function.

Activate the sample user exit as follows:

1. In addition to ADARUN NxLOG={2–8}, specify ADARUN UEX12=UX12SAMP for the
Adabas nucleus.

2. Supply the job control model that the user exit is supposed to submit under the DDNAME
COPYJOB.

Provide the following DD statement:

//INTRDR2 DD SYSOUT=(*,INTRDR)

Note:
The same DD statement is used by the sample user exit 2 or 12 for submitting PLCOPY or
CLCOPY jobs.

VSE/ESA

The sample user exit UX12SAMP is delivered on VSE/ESA as source and as a phase that can
be used without change or reassembly.

The source A.book and phase are delivered in the Adabas VSE sublibrary. The job to assemble
the user exit UX12ASML.X is also provided in the Adabas sublibrary. The sample job
UX12CJOB.X is to be customized and submitted by the user exit that invokes the ADARES
utility PLCOPY or CLCOPY function.

Activate the sample user exit as follows:

1. In addition to ADARUN NxLOG={2–8}, specify ADARUN UEX12=UX12SAMP for the
Adabas nucleus.

2. Supply the job control model that the user exit is supposed to submit under the DLBL
COPYJOB.

User Exits and Hyperexits
10

249

BS2000

The sample user exit UX12SAMP is delivered on BS2000 as source and as an object module
that can be used without change or reassembly.

The source form of the user exit is delivered in the Adabas source library. The job to assemble
the user exit, UX12ASML, is located in the Adabas jobs library. The jobs library also contains
a sample job UX12CJOB to be submitted by UX12SAMP that invokes the ADARES utility
PLCOPY or CLCOPY function.

Activate the sample user exit as follows:

1. In addition to ADARUN NxLOG={2–8}, specify ADARUN UEX12=UX12SAMP for the
Adabas nucleus.

2. If the machine can process job variables, place the following statement in the Adabas nucleus
job:

/SET–JV–LINK LINK–NAME=*DDJBDSF,–
/ JV–NAME=#JV.DSF
/MODIFY–JV JV–ID=JV–NAME(JV–NAME=#JV.DSF),–
/ VALUE=’ENTER–JOB FROM–FILE=*LIB–ELEM(,–
/LIB=<library>,ELEM=<dsfjob>),–
/JOB–CLASS=JCDSF’

—where

<library> is the library; and

<dsfjob> is the member where the customized job from step 2 is stored.

If the machine cannot process job variables, Adabas attempts to submit the job

(ADABAS.SRC,UX12CJBP,J)

—for the PLCOPY job and

(ADABAS.SRC,UX12CJBC,J)

—for the CLCOPY job.

An example job that allows the database ID to be supplied as a parameter is supplied in the
Adabas source library ADAvrs.SRC.

If this is not satisfactory, you can modify the supplied source UX12SAMP.

Adabas DBA Reference Manual
10

250

When using user exit 12 with BS2000 systems, the name of the ADARES CLCOPY or PLCOPY
job is no longer “hard-coded” in the user exit as in previous releases. Therefore, there are now
two ways of specifying the /ENTER job:

Method 1

Create a job variable containing the complete “enter job” command. For example:

/DCLJV ENTER.ADARES.PLCOPY,LINK=*DDJBPLC

/SETJV *DDJBx12,C’ENTER–PROC (<srclib>,ux12cjbx>),(DB=<dbid>),J–N=X12COPY’

—where

<srclib> is the library where the UX12CJBx(J) is stored (x=P for the PLCOPY job and
x=C for the CLCOPY job)

<ux12cjbx> is the J element name of the respective procedure job.

<dbid> is the database ID of this nucleus.

Note that all operands of the /ENTER command may be used. The presence of the /DCLJV
statement overrides the other possibilities. If necessary, the content of the job variables can be
changed during a nucleus session.

Use the link names “*DDJBPLC” for assigning the ADARES PLCOPY job, and “*DDJBCLC”
for assigning the ADARES CLCOPY job.

Method 2

Omit the JV specification. The user exit 12 will then issue the following command:

’ENTER–PROC RES.EP<dbid>.xLCO,(DB=<dbid>),J–N=xL12<dbid>’

Use the following code to extract the job element in your database job deck prior to starting the
database:

/DELETE–FILE RES.EP<dbid>.CLCO
/SET–JOB–STEP
/DELETE–FILE RES.EP<dbid>.PLCO
/SET–JOB–STEP
/ASS–SYSDTA *SYSCMD
/STA–LMS
//O <srclib>
//EXT–E (,<ux12cjbc>,J),RES.EP<dbid>.CLCO
//EXT–E (,<ux12cjbp>,J),RES.EP<dbid>.PLCO
//END
/ASS–SYSDTA *P

User Exits and Hyperexits
10

251

—where

<dbid> is the database ID of the P/CLCOPY database (this could be &DBID. in a
procedure)

<srclib> is the source library where the template copy procedures are held

<ux12cjbc> is a procedure to perform the exit 12 ADARES CLCOPY job

<ux12cjbp> is a procedure to perform the exit 12 ADARES PLCOPY job

Note:
For BS2000 systems, user exit 12 is delivered bothe as a source and as an object element.

Adabas DBA Reference Manual
10

252

Hyperdescriptor Exits 01 – 31

The hyperdescriptor exits (hyperexits) 1 through 31 (HEX01...HEX31) are required to define
the algorithm for user-supplied descriptor values (see the Adabas Utilities Manual). A hyperexit
is called by ADACMP or the Adabas nucleus whenever a hyperdescriptor value is to be
generated. ADACMP always uses the hyperdescriptor exit specified in its own ADARUN
statement. When ADAINV specifies a hyperdescriptor exit, the exit used is the one specified
in the Adabas nucleus’ ADARUN statement.

+0

+4

R1 Header Element(A) INPUT

Parent Element

Parent Element

Input
parameter
area

Header Element

Value Element

Value Element

Output
parameter
area

(A) OUTPUT

The address of the output must
be inserted by the user exit.

Address List 8-/16-byte Elements

Figure 10-21: Hyperdescriptor Exit Parameters

Note:
Hyperexits must return the same AMODE value to the calling program that was active when the
hyperexit was called.

Main Parameter Area

Parameter Address of the beginning of the . . .

0 (R1) input parameter area.

4 (R1) output parameter area. This address must be inserted by the user-written pro-
gram. If no values are to be returned, the address value must be set to zero.

User Exits and Hyperexits
10

253

INPUT Parameter Area (Pointed to by First Parameter Address)

Header Element

Parent Element

LL 0000 FNR HN

ISN 00000000

FN I L VALADDR

FN I L VALADDR

+0 +2 +4 +6

+8

+0 +2 +3 +4

+0 +2 +3 +4Parent Element

Header Element Fields

LL total length of the input parameter area, including this length field

FNR file number

HN name of the hyperdescriptor

ISN ISN assigned to the record

Parent Element Fields

FN name of the parent field

I periodic group index of the parent field. If the parent field is not part of a
PE group, this byte contains a zero.

L length of the value pointed to by VALADDR if the parent field is defined
with the FI option.

VALADDR address of the value of the parent field. The format of the value depends on
the options of the fields. If the parent field is defined with the NU (null val-
ue suppression) option and the value for this field is suppressed, no input
parameter element is created. The following examples show formats for the
value pointed to by VALADDR for parent fields with combinations of the
FI (fixed storage) and MU (multiple-value) options:

Adabas DBA Reference Manual
10

254

Fields without FI and without MU option:

Fields with FI and without MU option:

Fields without FI and with MU option:

Fields with FI and MU option:

VALADDR

VALADDR

VALADDR C

Repeated C times

VALADDR value value valueC

Repeated C times

*L,value

value

*L,value *L,value *L,value

—where

C is a one-byte value representing the MU count.

*L is a hexadecimal value length, including this one- or two-byte length
value. For lengths from 1 through 127, only a single byte is required.
For lengths ranging 128 to 255, two bytes are needed: the first byte
is set to X‘80’, and the second byte is set to the actual length value
(see the following example table):

Length Byte 1 Byte 2

L=127: x‘7F’ (x‘80’)

L=128: x‘80’ x‘80’

L=255: x‘80’ x‘FF’

User Exits and Hyperexits
10

255

OUTPUT Parameter Area

This area must be allocated and filled within the hyperdescriptor user exit. The address of this
area must be placed into the 2nd position of the main parameter area.

This area consists of a 8-byte header followed by the generated hyperdescriptor values in
compressed format.

Header Element

followed by 0,1 or

LL 00 ISN

ValueL

L Value

+0

+0

+0

+1

+1

+2 +4

‘n’ value elements

Header Element

LL total length of the output parameter area, including this length field.

00 reserved space. This must be set to zeros.

ISN the ISN to be assigned to the descriptor values. If the original ISN is to be changed,
the new ISN must be inserted here. If these four bytes contain zero on return to the
Adabas nucleus, the original ISN is used. This is a four-byte binary value.

Note:
If the hyperexit returns an ISN in the ISN field of the header element, the file must be defined
with USERISN=YES to prevent ISN reassignment when the file is later reloaded.

Value Elements

L length of the following value, including this length byte. The maximum length
depends on the format in use for the hyperdescriptor.

Value the descriptor value to be inserted into the index. The value must follow the rules
which are in effect for the format assigned to this hyperdescriptor. If the hyper-
descriptor is defined with the PE option, one byte containing the one-byte PE index
must immediately follow the value and be included in length L.

The nucleus checks values of packed or numeric format for validity. Valid signs for
packed fields are A,C,E,F (positive) and B,D (negative). The nucleus changes all
signs to F or D.

Adabas DBA Reference Manual
10

256

Examples:

L Value

04 R
B06

03
04

E D
L U E02

123F
123F01

where X’02’ is a PE index
packed 123
packed 123 in PE group with index 1

Null Value Option

The NU (null value) option is possible for the hyperdescriptor and/or parent fields. The possible
combinations are as follows:

� The hyperdescriptor is not NU:

– The parentfield is not NU and the value is null, the hyperexit is called and the null value
is passed.

– The parentfield is NU and the value is null, the hyperexit is called and no input parameter
element is created for this parent field.

– All parentfields are NU and all values are null, the hyperexit is called and no input
parameter element is created for any parent field.

� The hyperdescriptor is NU:

– The parentfield is not NU and the value is null, the hyperexit is called and the null value
is passed.

– The parentfield is NU and its value is null, the hyperexit is called and no input parameter
element is created for this parent field.

– All parentfields are NU and all values are null, the hyperexit is not called.

User Exits and Hyperexits
10

257

Collation Descriptor Exits 01 – 08

The collation descriptor exits 1 through 8 (CDX01 through CDX08) are used for encoding and
decoding values for the corresponding collation descriptors.

A collation descriptor may be defined for a field with alphanumeric or wide format. Its values
are stored in the index, not in the record itself. The number of the collation descriptor exit used
to derive the values is associated with the collation descriptor.

A sample collation descriptor exit CDXE2A is provided in the Adabas source dataset. It
converts EBCDIC to ASCII for the encoding function and the reverse (ASCII to EBCDIC) for
the decoding function.

Collation Descriptor Exit Interface

The collation descriptor exit interface is defined in the CDXPARM DSECT in the Adabas source
dataset. The interface has three functions:

� initialization

� encoding

� decoding (optional)

Initialization Parameters

R1 points to a list of addresses that point to five storage areas of the caller. The collation
descriptor exit must set the five areas as follows:

CDXSPC default space character; a maximum of 4 bytes

CDXSPCL fullword containing the size of the space character

CDXENC—> address of encoding function

CDXDEC—> address of decoding function

If the returned address is zero, decoding is not supported. The collation
descriptor cannot then be used for L9 processing.

CDXVER—> address of zero-byte delimited version string

Adabas DBA Reference Manual
10

258

R1 CDXSPC

CDXENC

CDXSPCL

CDXDEC

CDXVER

Encoding/Decoding Parameters

R1 points to a list of five fullword-sized parameters:

CDXIA address of the input string

CDXIL length of the input string

CDXOA address of the output string

CDXOL size of the output area

CDXARL address of the length of the returned output string

The collation descriptor exit stores

� the output string in the area at the address specified by CDXOA; and

� the input string length in the fullword at the address specified by CDXARL.

R1 CDXIA

CDXOA

CDXIL

CDXOL

CDXARL RL

A

259

APPENDIX A : COMMAND LOG FORMATS

This appendix provides the two command log formats that Adabas supports.

The first format (invoked by CLOGLAYOUT=4) has been in use since Adabas version 4.

The second format (invoked by CLOGLAYOUT=5) is supported only in versions 5.2 and above
and is the default format. It includes additional information.

The tables in this appendix refer to the following command types:

Update A1/A4, E1/E4, N1/N2

Simple All non-update commands with a single search argument.

Complex All non-update commands with more than one search argument.

The command type field may contain other information that is unrelated to commands. The
flags should therefore be tested with a binary mask

B’xxxx xusc’

where “u” is the update flag bit, “s” is the simple flag bit, and “c” is the complex flag bit.

Adabas DBA Reference Manual
A

260

CLOGLAYOUT=4

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

0 0 2 binary record length (inclusive)

2 2 2 binary x ‘0000’

4 4 1 binary record type (see note 1)

x ‘00’ basic record only
x ‘01’ includes control block
x ‘02’ includes format buffer
x ‘04‘ includes record buffer
x ‘08’ includes search buffer
x ‘10’ includes value buffer
x ‘20’ includes ISN buffer
x ‘40’ includes I/O list

5 5 1 binary user priority (from operating system)

6 6 1 binary command type flags (simple, complex, update)

x ‘01’ simple command
x ‘02’ complex command
x ‘04’ update command

7 7 1 binary number of posted ECBs in command queue

8 8 1 binary reserved

9 9 1 binary thread number

A 10 2 binary number of descriptors updated

C 12 8 alphanumeric job name

14 20 4 binary user ID (see note 2)

18 24 4 binary wall clock time (STCK-format) at the point the
command processing is completed by the nucleus

1C 28 4 binary duration (in units of 16 microseconds)

20 32 8
(4 � 2)

binary ASSO/DATA/WORK I/O counts for this command
(except blocked ET command I/Os to WORK)

28 40 4 binary Additions 2 field after command execution (can contain
response subcodes)

Command Log Formats
A

261

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

2C 44 2 alphanumeric command option 1 and 2 fields

2E 46 2 alphanumeric command code

30 48 4 binary command ID

34 52 2 binary file number

36 54 2 binary response code

38 56 4 binary ISN

3C 60 end of basic
record

64 alpha./binary Rest of control block starting with ISN lower limit

2 binary
alphanumeric

format buffer length (inclusive)
format buffer

2 binary
alphanumeric

record buffer length (inclusive)
record buffer

2 binary
alphanumeric

search buffer length (inclusive)
search buffer

2 binary
alphanumeric

value buffer length (inclusive)
value buffer

2 binary
alphanumeric

ISN buffer length (inclusive)
ISN buffer

2 binary I/O list length (inclusive)

(n x 4) binary I/O list for this command; 4 or 5 bytes are used for each
I/O operation, depending on the RABN length used in
the database (RABNSIZE):

If RABNSIZE=3, byte 1 contains

01 = Associator read
02 = Associator write
03 = Data read
04 = Data write
05 = Work read
06 = Work write

Bytes 2–4 contain the 3-byte RABN that is read or
updated.

Adabas DBA Reference Manual
A

262

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

If RABNSIZE = 4, byte 1 contains

81 = Associator read
82 = Associator write
83 = Data read
84 = Data write
85 = Work read
86 = Work write

Bytes 2–5 contain the 4-byte RABN that is read or
updated.

Notes:

1. The value in the record type field (offset +4) determines which parts of the record mentioned
above are present.

2. For CICS, Shadow, and Westi TP monitor users, Adabas version 5 does not provide a unique
ID value in this field. Users of these TP monitors must revise programs requiring a unique ID
value to obtain it from the command queue element’s (CQE’s) CQEUID field. User exit 4
provides the CQE address at location 12(R1).

Command Log Formats
A

263

CLOGLAYOUT=5

Explanation of Log Record Types

Command log layout 5 comprises two log record types:

� the basic log record type (x‘0001’) is produced for all commands processed on noncluster nuclei
and for those that arrive from a remote nucleus and run under internal command queue elements
(ICQEs).

� the asynchronous request log record type (x‘0002’) is created on a nucleus that sends a command
to another nucleus. This record type is used in Adabas nucleus cluster environments only.

Fields with Alternate Interpretations

The following fields have alternate interpretations for each log record type:

� for the basic log record type (x‘0001’):

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

46 70 2 binary Associator I/O operation count

48 72 2 binary Data I/O operation count

4A 74 2 ������ Work I/O operation count

� for the asynchronous request log record type (x‘0002’):

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

46 70 2 binary number of internucleus destinations

48 72 2 binary internucleus messaging return code

4A 74 2 ������ internucleus messaging reason code

Adabas DBA Reference Manual
A

264

Remote Nucleus ID Field

A field has been added at offset 4C for both log record types:

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

4C 76 2 ������ the ID of the remote nucleus

� For the basic log record type (x‘0001’) where the command originates in another nucleus, this
field contains the ID of the nucleus that sent the command. It remains zero for locally-executed
commands and noncluster nuclei.

� For the asynchronous request log record type (x‘0002’), this field contains the ID of the nucleus
to which the command is sent. It is zero for implicit broadcasts (GLOBAL and SYSTEM) and
contains the ID of the first destination for explicit broadcasts (list of destinations). The CLOG
record contains the Adabas control block and buffers related to the first (or only) destination,
and the job name and communications ID of the initiator of the request.

Command-Executing Nucleus ID Field

A field has been added at offset 58 for both log record types:

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

58 88 2 binary the ID of the nucleus executing the command

60 90 2 — reserved (x‘0000 0000’)

For both log record types, this field provides the ID of the nucleus executing the command. In
a cluster environment, the nucleus ID is either the SMPID or the PLXID; in a noncluster
environment, the nucleus ID is zero (0).

Command Log Formats
A

265

Adabas Basic Log Record Type (x‘0001’)

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

0 0 2 binary record length (inclusive)

2 2 2 — reserved (x ‘0000’)

4 4 2 binary log record type:

x ‘0001’: Adabas basic log record

6 6 2 — reserved (x ‘0000’)

8 8 8 binary time in store clock (STCK) format when request was
logged

10 16 1 binary buffer types:

x‘00’ basic record only
x‘01’ includes Adabas control block
x‘02’ includes format buffer
x‘04‘ includes record buffer
x‘08’ includes search buffer
x‘10’ includes value buffer
x‘20’ includes ISN buffer
x‘40’ includes I/O list
x‘80’ includes user exit B data

11 17 1 binary dispatching priority (from operating system)

12 18 1 binary command type (simple, complex, update - see note)

x ‘01’ simple command
x ‘02’ complex command
x ‘04’ update command

13 19 1 binary number of posted ECBs in command queue

14 20 1 binary thread number

15 21 1 binary user buffer (UB) flag (see DSECT “UB”)

16 22 2 binary number of descriptors updated

18 24 8 alphanumeric job name

20 32 28 binary communication ID

Adabas DBA Reference Manual
A

266

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

3C 60 4 binary elapsed time for request in command queue (in units of
16 microseconds)

40 64 4 binary unique command sequence number

44 68 2 binary database ID

46 70 2 binary Associator I/O operation count

48 72 2 binary Data I/O operation count

4A 74 2 ������ Work I/O operation count

4C 76 2 ������ ID of the remote nucleus that sent the command

4E 78 1 binary architecture byte of caller (reserved)

4F 79 5 — reserved (x‘0000 0000 00’)

54 84 4 binary Adabas Review

58 88 2 binary ID of the nucleus executing the command

60 90 2 — reserved (x‘0000 0000’)

(Beginning of Adabas control block log area:)

5C 92 2 — reserved (x‘0000’)

5E 94 2 alphanumeric command code

60 96 4 alphanumeric command ID

64 100 2 binary file number

66 102 2 binary response code

68 104 4 binary ISN

6C 108 4 binary ISN lower limit

70 112 4 binary ISN quantity

74 116 2 binary format buffer length

76 118 2 binary record buffer length

78 120 2 binary search buffer length

7A 122 2 binary value buffer length

7C 124 2 binary ISN buffer length

Command Log Formats
A

267

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

7E 126 1 alphanumeric command option 1

7F 127 1 alphanumeric command option 2

80 128 8 alphanumeric additions 1 field

88 136 4 alphanumeric additions 2 field (returned lengths and response
subcodes)

8C 140 8 alphanumeric additions 3 field (password)

94 148 8 alphanumeric additions 4 field (cipher code)

9C 156 8 alphanumeric additions 5 field (global format ID/OPEN: timeout
values)

A4 164 4 binary command time in thread (in units of 16 microseconds)

A8 168 4 binary user area

(Beginning of optional log record area:)

AC 172 2 binary
alphanumeric

format buffer length (inclusive)

AE 174 2 binary
alphanumeric

record buffer length (inclusive)

B0 176 2 binary
alphanumeric

search buffer length (inclusive)

B2 178 2 binary
alphanumeric

value buffer length (inclusive)

B4 180 2 binary
alphanumeric

ISN buffer length (inclusive)

Adabas DBA Reference Manual
A

268

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

B6... 182.. 2 binary I/O list length (inclusive)

(n x 4) binary I/O list for this command; 4 or 5 bytes are used for each
I/O operation, depending on the RABN length used in
the database (RABNSIZE):

If RABNSIZE = 3, byte 1 contains

01 = Associator read
02 = Associator write
03 = Data read
04 = Data write
05 = Work read
06 = Work write

Bytes 2–4 contain the 3-byte RABN that is read or
updated.

If RABNSIZE = 4, byte 1 contains

81 = Associator read
82 = Associator write
83 = Data read
84 = Data write
85 = Work read
86 = Work write

Bytes 2–5 contain the 4-byte RABN that is read or
updated.

Command Log Formats
A

269

Asynchronous Request Log Record Type (x‘0002’)

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

0 0 2 binary record length (inclusive)

2 2 2 — reserved (x ‘0000’)

4 4 2 binary log record type:

x ‘0002’: asynchronous request log record

6 6 2 — reserved (x ‘0000’)

8 8 8 binary time in store clock (STCK) format when request was
logged

10 16 1 binary buffer types:

x‘00’ basic record only
x‘01’ includes Adabas control block
x‘02’ includes format buffer
x‘04‘ includes record buffer
x‘08’ includes search buffer
x‘10’ includes value buffer
x‘20’ includes ISN buffer
x‘40’ includes I/O list
x‘80’ includes user exit B data

11 17 1 binary dispatching priority (from operating system)

12 18 1 binary command type (simple, complex, update - see note)

x ‘01’ simple command
x ‘02’ complex command
x ‘04’ update command

13 19 1 binary number of posted ECBs in command queue

14 20 1 binary thread number

15 21 1 binary user buffer (UB) flag (see DSECT “UB”)

16 22 2 binary number of descriptors updated

18 24 8 alphanumeric job name

20 32 28 binary communication ID

Adabas DBA Reference Manual
A

270

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

3C 60 4 binary elapsed time for request in command queue (in units of
16 microseconds)

40 64 4 binary unique command sequence number

44 68 2 binary database ID

46 70 2 binary number of internucleus destinations

48 72 2 binary internucleus messaging return code

4A 74 2 ������ internucleus messaging reason code

4C 76 2 ������ ID of the remote nucleus to which the command is sent

4E 78 1 binary architecture byte of caller (reserved)

4F 79 5 — reserved (x‘0000 0000 00’)

54 84 4 binary Adabas Review

58 88 2 binary ID of the nucleus executing the command

60 90 2 — reserved (x‘0000 0000’)

(Beginning of Adabas control block log area:)

5C 92 2 — reserved (x‘0000’)

5E 94 2 alphanumeric command code

60 96 4 alphanumeric command ID

64 100 2 binary file number

66 102 2 binary response code

68 104 4 binary ISN

6C 108 4 binary ISN lower limit

70 112 4 binary ISN quantity

74 116 2 binary format buffer length

76 118 2 binary record buffer length

78 120 2 binary search buffer length

7A 122 2 binary value buffer length

7C 124 2 binary ISN buffer length

Command Log Formats
A

271

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

7E 126 1 alphanumeric command option 1

7F 127 1 alphanumeric command option 2

80 128 8 alphanumeric additions 1 field

88 136 4 alphanumeric additions 2 field (returned lengths and response
subcodes)

8C 140 8 alphanumeric additions 3 field (password)

94 148 8 alphanumeric additions 4 field (cipher code)

9C 156 8 alphanumeric additions 5 field (global format ID/OPEN: timeout
values)

A4 164 4 binary command time in thread (in units of 16 microseconds)

A8 168 4 binary user area

(Beginning of optional log record area:)

AC 172 2 binary
alphanumeric

format buffer length (inclusive)

AE 174 2 binary
alphanumeric

record buffer length (inclusive)

B0 176 2 binary
alphanumeric

search buffer length (inclusive)

B2 178 2 binary
alphanumeric

value buffer length (inclusive)

B4 180 2 binary
alphanumeric

ISN buffer length (inclusive)

Adabas DBA Reference Manual
A

272

Offset Item Length/Format/Description

Hex. ExplanationFormatBytesDec.

B6... 182.. 2 binary I/O list length (inclusive)

(n x 4) binary I/O list for this command; 4 or 5 bytes are used for each
I/O operation, depending on the RABN length used in
the database (RABNSIZE):

If RABNSIZE = 3, byte 1 contains

01 = Associator read
02 = Associator write
03 = Data read
04 = Data write
05 = Work read
06 = Work write

Bytes 2–4 contain the 3-byte RABN that is read or up-
dated.

If RABNSIZE = 4, byte 1 contains

81 = Associator read
82 = Associator write
83 = Data read
84 = Data write
85 = Work read
86 = Work write

Bytes 2–5 contain the 4-byte RABN that is read or up-
dated.

B

273

APPENDIX B : GLOSSARY OF ADABAS TERMS

The terms defined here are referred to in this manual, and apply to Adabas.

abnormal termination

The situation caused when the recovery and termination processes in the operating environment
are entered prematurely because a program is unable to continue.

Adalink

A generic term for that part of the Adabas API (application program interface) that is specific
to a particular teleprocessing (TP) monitor. The Adabas API is used to link application programs
to Adabas. The actual module name depends on the TP monitor being used; for example, the
module name for linking to a batch or TSO program is ADALNK, and for CICS, the module
name is ADALNC. The term “Adalink” refers to the module appropriate for the given
environment. The terms “Adalink(s) and “ADALNK(s)” are synonyms.

address converter

Adabas stores each database record in a Data Storage block identified by a relative Adabas block
number (RABN). Each record’s RABN is kept in a table called the address converter. The
address converters, one for each database file, are stored in the Associator. Address converter
entries are in ISN order (that is, the first entry tells the RABN location of data for ISN 1, the 15th
entry holds the RABN location of data for ISN 15, and so on).

address space

The storage area assigned to a program task/work unit. In MVS, an address space is a region;
in VSE, a partition; and in BS2000, a task. In this manual, the term “region” is used as a synonym
for “partition” and “task”.

database administrator (DBA)

Controls and manages the database resources. Tasks include defining database distribution,
assigning a structure and resources, creating and maintaining programming and operation
standards, ensuring high performance, resolving user problems, defining and teaching user
training, controlling database access and security, and planning for growth and the integration
of new database resource applications and system upgrades. Also known as the database analyst.

Adabas DBA Reference Manual
B

274

expanded file

A logical file comprising physical files in one or more locations. The physical files have the
same field definition table (FDT), but non-overlapping ISN ranges. The data content of at least
one field (the field value criterion) determines the physical file in which a data record is located.

field definition table (FDT)

A table that defines each file’s record structure and content. There is one FDT for each database
file. FDTs, stored in the Associator’s fixed area, have three parts: the first is a list of the file’s
fields in physical record order, the second part is a “quick index” to the records in the first part,
and the third part defines the files sub/superfields and sub-/super-/hyper- and phonetic
descriptors.

heartbeat record

A record generated at regular intervals by a separate unit of work associated with the error
handling and message buffering subsystem in the nucleus address space. The record can be
examined using the heartbeat subtask user exit ADALERTX or Adabas Review.

internal sequence number (ISN)

Every Adabas record is assigned an internal sequence number (ISN) to identify the record. Each
record keeps its original ISN, regardless of where it is located.

Records in a physical database file have four-byte ISNs ranging from MINISN to MAXISN. In
replicated files, a record has the same ISN in all file copies. In partitioned files, the ISN ranges
are non-overlapping for each physical file.

multiclient file

An Adabas file with records accessible through an owner ID. Only records identified by the
same individual or group owner ID can be accessed or updated by the related user. This allows
the file to be maintained as a single Adabas file, but to be used as multiple logical files (each
record group belonging to an owner ID is a “logical file”). “Super” owner IDs allow access to
all records in the file.

node

A real or virtual processor running a multitask operating system. Each node has an Adabas router
and an Entire Net-work communicator.

Glossary
B

275

physical database

A physical database identified by its database ID is defined with Adabas utilities. An Adabas
nucleus running in an address space allows access to the physical files in the physical database.

physical file

A physical file contains database records. Each physical file is identified by a file number. The
number of physical files (and physical file numbers) per physical database is limited to 5000
or one less than the ASSOR1 block size, whichever is lower.

PIN

Plug-in service. A recovery routine used by the error handling and message buffering facility
to handle a condition. PINs are designed to analyze and, in some cases, determine the cause of
an ABEND while allowing the nucleus to continue processing. The PIN determines whether it
is safe to allow the nucleus to continue processing and prints appropriate messages to notify the
DBA when this is the case.

program check

A situation that causes a program interrupt on a machine with IBM architecture.

record buffer

The portion of the calling program’s parameter area, called the “user buffer”, that contains the
data transferred during Adabas read, search, and update operations. When reading data field
definitions, Adabas also returns the field definition information in the record buffer.

region

This manual uses “region” to collectively refer to storage space allocated to user jobs by OS/390
or z/OS, VSE/ESA, and BS2000 operating systems.

Adabas DBA Reference Manual
B

276

relative Adabas block number (RABN)

The basis of Adabas storage addressing. Adabas divides Data, Associator, and Work disk space
into device-dependent logical blocks. The blocks in each of the three areas are numbered
consecutively in ascending sequence beginning with RABN 1. The data blocks themselves as
well as their addresses are referred to throughout Software AG publications as “RABNs”. In
other words, the sentence, “Adabas assigns RABNs 1–10 to the Associator” means ten Adabas
storage blocks numbered 1–10 are assigned—not just the block numbers, whereas “Adabas
assigns 50 RABNs to the Associator” means 50 blocks of storage with unspecified RABN
numbers are assigned.

service

A processor of Adabas calls and issuer of replies. An Adabas nucleus is an example of a service
(see also target).

snap

The formatted, hexadecimal dump of an area in memory, either an address space or a data space.

target

A receiver of Adabas calls. A target maintains a command queue, and communicates with
routers using ADAMPM. A target is also classified as a “service”. The Adabas nucleus is a
target.

user

A batch or online application program that generates Adabas calls and uses an Adalink for
communication.

	

INDEX

A
Adabas Cluster Services, monitor a session

online, 147
Adabas Online System, demo version, 141–178

error messages for, 146–178
invoking, 144–178
logging on, 144–178
main menu functions, 144–178
obtaining help information, 146–178
overview, 142–178
range of options, 143–178
selecting a menu option, 146–178
specifying a database for, 145–178
using program function (PF) keys, 145–178

Adabas Parallel Services, monitor a session
online, 147

Adabas Review, hub event handler, user exit 5,
234

ADADBS utility, allocate space using, 119
ADAINV utility, allocate space using, 122
Adalink, definition of, 273
ADALOD utility, allocate space using, 123
ADAM, direct record access without inverted

lists, 56
ADAMXY module, 182
ADAORD utility, allocate space using, 126
ADARAI utility

concept of generation, 73
general description, 72
starting, 73

ADARUN, display parameters, 148
ADASAV utility, allocate space using, 126
ADASMXIT, 193
ADAULD utility, user exit 9 processing, 241
Address converter

definition of, 273
space allocation by nucleus, 118

space calculation, using formula, 101
Address space, definition, 273
Associator

blocks reserved by Adabas, 94
device allocation, 112
space calculation

automatic, 93
using formula

���	�

����	���������	���
���	������	��
���	��
���	�����	��
���	���

Autobackout, function of routine, 69

B
BS2000, options for invoking user exit 2, 225,

250

C
Checkpoints

list current, 155
types of, 156

Cipher code, program to insert in ACB, 211
Ciphering, data, 65
Command log

CLOGLAYOUT=4, 260–262
CLOGLAYOUT=5, 263–265
device allocation, 112
dual dataset, user exit for switch processing,

221
multiple dataset, user exit for switch process-

ing, 243
program to print, 229
record layouts, 259–261
user exit 4 processing, 227

Commands

Adabas DBA Reference Manual

278

checkpoint, 69
CL (close), 68
ET (end transaction), 68

Condition description block (CDB), 194

D
Data access, strategies for, 52–65
Data compression

options
default, 58, 59
fixed-storage (FI), 58, 59
null-value suppression, 58, 59

padding factors, 61
user exit 6 processing before, 236

Data duplication
logical, 50
physical, 50

Data protection area, space calculation, using
formula, 104

Data Storage
device allocation, 112
space allocation by nucleus, 119
space calculation

automatic, 93
using formula, 102

Database
define a, 91–113
define parameters for, 114
definition of physical, 275
design, 43–91
display general layout, 176
estimate size of, 91
file and record design, 45
online maintenance menu, 161
online report, 170
space management, 115–129
status report, using to control space use, 127

DBA

advising on data collection and validation, 13
advising on system development, 12
assisting in database design, 9
database planning, 31
defining database contents, 13
definition of, 273
describing data sources, 20
determining responsibility for data, 12
documenting

applications using the database, 19
back-up procedures, 22
data access and manipulation procedures,

20
database standards, 15
restart and recovery procedures, 22
the database, 14

educating users, 10
establishing database procedures and stan-

dards, 7
liaison with user, 28
maintaining procedures and standards, 9
maintaining user ID and password informa-

tion, 21
management support for, 5
measuring database performance, 23
necessary attributes, 5
position in the IS organization, 4
relationship to operations, 37
selecting applications, 12
selecting suitable applications, 10
summary of functions performed by, 11
training responsibilities, 24
using a data dictionary, 17
working with Software AG, 39

Descriptor
efficient use of, 52
prefixed with multiclient owner IDs, 78
using ISNs as, 56

Device types, allocating Adabas components to,
112

Index

	�

E
Error handling facility, 179–196
Errors

Extended Error Recovery menu, 163
planning for recovery, 67
recovery from, transaction, 68
system/transaction failure, 69

ETID, conversion to ownerid by ADALOD, 81
Exclusive file control, 70
Expanded files

and the nucleus, 87
and utilities, 88
define using ADALOD, 84
definition of, 274
deleting, 86
description of, 83
general description, 49
inserting a component file, 86
inspecting, 86
recommended nucleus changes for, 87
removing a component file, 86
restrictions when using, 88
rules for defining, 85

Extents
description of logical, 117
description of physical, 115

F
Field definition table

define for a new file, using AOS demo ver-
sion, 159

definition of, 274
Fields

advantages and disadvantages of combining,
51

fixed-storage (FI) option, 52, 59
null-value suppression (NU) option, 59
using groups of, 51

using numeric, 52
File coupling

logical, 55
multiclient support for, 76

physical, 54
Files

database allocation of large, 113
design of records and, 45
display a list of, 171
display file layout, 173
display locked, 166, 167
exclusive control of, 70
linking multiple physical in a single logical,

49
online maintenance menu, 158
physical, definition of, 275

Free space table (FST), description of, 117

G
Glossary, DBA, 273

H
Heartbeat record, definition, 274
Hold queue, display, 150
Hyperdescriptor

description of, 54
user exit, description of, 209, 252

I
Improved data recording capability, use recom-

mendation, 113
Index, space allocation, by nucleus, 119
ISNs

definition of, 274
user-assigned, description, 56
using as descriptors, 56

Adabas DBA Reference Manual

280

L
Large files, database allocation with, 113
Logs

dual dataset, user exit 2 processing, 221
multiple dataset, user exit 12 processing, 243

M
Maintenance, display levels, 154
MAXISN, ADALOD parameter, 118
Multiclient files

ADACMP utility support for, 82
ADALOD utility support for, 80
ADAULD utility support for, 82
concept of owner, 74
concept of super user, 75
converting from single client, 74
data and index structures, 76
definition of, 274
description of, 74
owner ID

relationship to user ID, ETID, 74
stored in user profile, 79

performance considerations, 79
response codes, 79
support for soft coupling, 76
transparent to application programs, 76

Multiple-value fields, description of, 46
Multiprocessing, monitoring sessions, 147

N
Node, definition, 274
Normal index, space calculation, using formula,

96
Nucleus

required components, 91
space allocation by, 118

O
Operator, program to provide instructions to,

239

P
Password

program to insert in ACB, 211
security, 63

Performance
controlling during database design, 43
methodology for achieving satisfactory, 44

Periodic groups, description of, 46
Phonetic descriptor, description, 54
Phonetization, processing with user exit 3, 226
PIN modules

ADAMXY, 182
add / delete online, 164
installing, 184
list of, 184

PIN routine
processing, 182
user exit, 193

PIN routines
activate / deactivate online, 165
defined, 181, 275
display, 165

PINAUTOR, 186
activating, 184
installing, 184
user exit with, 195

PINAVI, 187
PINCOR, 187
PINOPRSP, 188

activating, 184
installing, 184

PINRSP, 188
user exit with, 195

PINSAF, 190
PINUES, 191
Predict, Adabas data dictionary, overview, 18

Index

	��

PRILOG
control card parameters, 230
executing under VSE/ESA, 232
installing under OS/390 or z/OS, 233
installing under VSE/ESA, 231
messages reference, 230
program to print command log, 229

Protection log
device allocation, 112
dual dataset, user exit for switch processing,

221
multiple dataset, user exit for switch process-

ing, 243

R
RABNs

definition of, 276
description of, 116
device space required by, 116

Record buffer, definition, 275
Records

combining multiple types in one file, 48
design of, 51
designing files and, 45
direct access to, 56

Recovery, and restart, planning and design,
66–73

Recovery log
defining, 73
device allocation, 112
general description, 72

Resources, display usage statistics, 151–153

S
Security

by ciphering data, 65
by value, 65
password and value-level, 63

planning and facilities, 62–65
using ADASAF, 65
using AOS Security, 65
using Natural Security, 65

Service, definition, 276
Session

display status, 152
monitor online, 146–154
terminate online, 169

Sort
device allocation, 112
space calculation, using formula, 109

Space
allocate

by nucleus, 118
to Adabas components, 112
using ADADBS, 119
using ADAINV, 122
using ADALOD, 123
using ADAORD, 126
using ADASAV, 126

allocate/deallocate, procedures, 117
efficient use of, 57
estimating for database as a whole, 94
estimating for each file, 94
format using ADAFRM utility, 114
formulas for estimating, 95
full physical extents, recommended action,

128
general procedure for estimating, 94
management, database, 115–129
maximum logical extents reached, recom-

mended action, 129
maximum physical extents reached, recom-

mended action, 129
problems and recommended actions, 128

Subdescriptor, description, 53
Superdescriptor, description, 53
System

display status, 152
failure, 69

Adabas DBA Reference Manual

282

T
Target, definition, 276
Temp, device allocation, 112
Threads, display usage statistics, 153
Transaction

failure, 69
recovery, 68
recovery limits, 69

U
Universal encoding support (UES), 197–201
Upper index, space calculation, using formula,

100
User

definition of, 276
log data processing, 227
stop operation for, using Basic Services, 168

User data
for restart purposes, 70
read, using direct call command, 69

User exit, 12, 245
User exits

1, command processing, 211
12, multiple dataset log processing, 243

2
dual dataset log processing, 221
dual log processing, BS2000 options, 225,

250
3, phonetizing, 226
4, command log processing, 227
5, Adabas Review hub event handler, 234
6, processing before data compression, 236
8, operator interface, 239
9, ADAULD utility record write, 241
ADASMXIT, 193
decriptions of, 209–243
handling errors in, 180
overview, 209
PIN routine, 193

User(s), stop online, 168

W
Work

dataset allocation, 103
device allocation, 112
part 1, space calculation, using formula, 104
part 2, space calculation, using formula, 106
part 3, space calculation, 107
part 4, space calculation, 108

Notes

283

Adabas DBA Reference Manual

284

Notes

285

Adabas DBA Reference Manual

286

	Adabas DBA Reference
	Table of Contents
	About this Manual
	DBA Roles and Responsibilities
	Database Design
	Defining an Adabas Database
	Database Space Management
	Database Monitoring and Tuning
	Adabas Online System Demo Version
	Error Handling and Message Buffering
	Universal Encoding Support (UES)
	Multi-Platform Support
	User Exits and Hyperexits
	Appendices
	Command Log Formats
	Glossary of Adabas Terms

	Index

